Lesson Plan | Discipline:
Mechanical Engg. | Semester: 3 rd | Faculty Name: Litu Behera | |-----------------------------------|--|---| | Subject: Thermal
Engineering-I | No. of Days/per
week class
allotted:04 | Semester from 15.09.2022 to 22.12.2022
No. of weeks:15 | | week | Class day | Theory topics | | 1 st | 1 st | Thermodynamic concept & Terminology Thermodynamic Systems (closed, open, isolated), | | adky. | 2 nd | Thermodynamic properties of a system (pressure, volume, temperature and units of measurement.) | | | 3 rd | Problems on absolute pressure and temperature relationship. | | | 4 th | Thermodynamic properties of a system (entropy, Enthalpy, Internal energy and units of measurement). | | 2 nd | 1 st | Intensive and extensive properties, Define thermodynamic processes, path. | | | 2 nd | Define thermodynamic cycle, state, path function, point function. | | | 3 rd | Thermodynamic Equilibrium, Quasi-static Process. | | | 4 th | Conceptual explanation of energy and its sources. | | 3 rd | 1 st | Work, heat and comparison between the two. | | | 2 nd | Mechanical Equivalent of Heat. | | | 3 rd | Work transfer, Displacement work | | | 4 th | Problem on Displacement work. | | 4 th | 1 st | Laws of Thermodynamics | | | | State & explain Zeroth law of thermodynamics, | | | | State & explain First law of thermodynamics. | | | 2 nd | Problems on First law of thermodynamics. | | | 3 rd | Problems on First law of thermodynamics, | | 14 | | Limitations of First law of thermodynamics. | | | 4 th | First law of Thermodynamics (steady flow energy equation) | | 5 th | 1 st | application of steady flow energy equation to turbine | | | 2 nd | Problems on SFEE to turbine. | | | 3 rd | application of steady flow energy equation to compressor | | | 4 th | Problems on SFEE to compressor. | | 6 th | 1 st | | | | | Second law of thermodynamics (Claucius & Kelvin | | | | Plank statements). | Hy. 9.2022 14-9.22 HOD (Mech) | | 2 nd | Application of second law in heat engine & | |------------------|--|---| | | | determination of | | | | efficiencies | | | 3 rd | Droblems on heat engine | | | 4 th | Application of second law in heat pump, refrigerator | | | | & determination of C.O.P | | th | 1 st | Problems on heat pump and refrigerator | | | 2 nd | Properties Processes of perfect gas | | | _ | 1 Confort god! | | | | Boyle's law, Charle's law, Avogadro's law, Dalton's | | | | law of partial pressure, GUV JUSSAC Jaw. | | | 3 rd | General gas equation, characteristic gas constant, | | | 3 | Lu : l cas constant | | | 4 th | Explain specific heat of gas (Cp and Cv) and Relation | | | 4 | hetween Cp & CV. | | ath | 1 st | Enthalpy of a gas and problem on it. | | 3 th | 2 nd | Work done during a non- flow process. | | | 3 rd | Broblems on non flow work done | | | | Application of first law of thermodynamics to | | | 4 th | various non flow process (Isothermal, Isobaric, | | | | Isentropic and polytrophic process) | | 100 | - st | Problems on various non flow process | | 9 th | 1 st | Free expansion & throttling process. | | | 2 nd | Internal combustion engine | | | 3 rd | Explain & classify I.C engine. | | | 46 | Terminology of I.C Engine such as bore, dead | | | 4 th | centers, stroke volume. | | | | Terminology of I.C Engine such piston speed &RPM | | 10 th | 1 st | Explain the working principle of 2-stroke engine (C. | | | 2 nd | | | | | & S.I engine) Explain the working principle of 4-stroke engine (C. | | | 3 rd | | | | | & S.I engine) Differentiate between 2-stroke & 4- stroke engine. | | | 4 th | Differentiate between 2-stroke & 4 stroke engine | | 11 th | 1 st | Differentiate between C.I & S.I engine. | | | 2 nd | Gas Power Cycle | | | | Carnot cycle | | | 3 rd | Problems on carnot cycle. | | | 4 th | Otto cycle. | | | 1 st | Problems on Otto cycle | | 12 th | 2 nd | Diesel cycle. | | | 3 rd | Problems on Diesel cycle | | | 4 th | Dual cycle. | | | The state of s | Problems on Dual cycle | | 13 th | 1 st | Flobicitis on Bad. 975.5 | | | 2 nd | Comparison among otto, diesel and dual cycle | |------------------|-----------------|---| | | 3 rd | Fuels and Combustion | | | | Define Fuel and Types of fuel. | | | 4 th | Application of different types of fuel. | | 14 th | 1 st | Heating values of fuel. | | | 2 nd | Problems on Heating values of fuel. | | | 3 rd | Quality of I.C engine fuels | | | 4 th | Octane number and Cetane number | | 15 th | 1 st | Revision of module-1,2 & 3 with Previous year | | | | question | | | 2 nd | Revision of module-4,5 & 6 with Previous year | | | | question | | | 3 rd | Previous year question discussion | | | 4 th | Question bank discussion | Mr. 9.2022 14-9-22 HOD (Mech)