LESSON PLAN SUB: ELECTRICAL ENGINEERING MATERIAL **BRANCH:- ELECTRICAL ENGG.** SEMESTER: 3rd SESSION:2022-2023 NAME OF FACULTY: NIBEDITA HO ## GOVERNMENT POLYTECHNIC, BHADRAK HOD (ELECT.) G.P.BHADRAK Academic Co-ordinator Principal Principal Polytechnic Bhadrak | Discipline:
Electrical Engg. | Semester:
3 rd | Name of the Teaching Faculty :
Nibedita Ho | |---------------------------------------|---|--| | Subject:
Electrical
Engineering | No. of Days/per
week class
allotted:4 | Semester from date: 15.09.2022 To Date: 21.01.2023 | | Material | | No. of Weeks:15 | | Week | Class Day | Theory | | | 1 st | Introduction Conducting Materials | | 1 st | 2 nd | Atomic structure,Inter atomic bonds | | | 3 rd | Resistivity, factors affecting resistivity | | | 4 th | Classification of conducting materials into low-resistivity and high resistivity materials | | | 1 st | Low Resistivity Materials and their Applications. (Copper, Silver, Gold, Aluminum, Steel) | | 2 nd | 2 nd | Stranded conductors | | 2 | 3 rd | Bundled conductors | | | 4 th | Low resistivity copper alloys | | | 1 st | High Resistivity Materials and their Applications(Tungsten, Carbon, Platinum, Mercury) | | | 2 nd | Superconductivity | | 3 rd | 3 rd | Superconducting materials | | | 4 th | Application of superconductor materials | | - L | 1 st | Introduction of Semiconducting Materials | | | 2 nd | Electron Energy and Energy Band Theory | | 4 th | 3 rd | Excitation of Atoms | | | 4 th | Insulators, Semiconductors and Conductors | | 5 th | 1 st | Semiconductor Materials | | | 2 nd | Covalent Bonds | | J | 3 rd | Intrinsic Semiconductors | | | 4 th | Extrinsic Semiconductors | | 6 th | 1 st | N-Type Materials, P-Type Materials | | 6 | 2 nd | Minority and Majority Carriers | | | 4 th | Applications of Semiconductor materialsRectifiers ,Temperature-sensitive resisters or thermistors | | | 1 st | Photoconductive cells, Photovoltaic cells, Varisters, Transistors, Ha effect generators, Solar power | | 7 th | 2 nd | | |---|-------------------|---| | - | | Introduction Insulating Materials | | | 3 rd | | | | | General properties of Insulating Materials Electrical properties | | | .4 th | properties | | | ct | Visual properties , Mechanical properties | | | 1 st | | | | | Thermal properties | | | 2 nd | | | | _ | Chemical properties, Ageing | | | | , series of Ageing | | 8 th | | | | ٥ | 3 rd | Insulating Materials – Classification, properties, application of | | | | fibrous materials | | | | | | * | 4 th | Imprograted file | | | | Impregnated fibrous materials, Non-resinous materials | | | | | | B | , 1 st | | | | | Insulting liquids, Ceramics, mica & Mica Products | | 9 th | 2 nd | 5 1 7 Francesymous & Wiled Floudets | | | | Asbestos & asbestos products, glass, Natural & synthetic rubbers. | | | 3 rd | | | | th. | Glass, Natural & synthetic rubbers. | | | 4 th | | | | 1 st | Insulating resins & their products, laminates | | | 1 | Adhesives, enamels & varnishes | | 10 th | | Autresives/enamels availinsiles | | | 2 nd | Insulating gases -Introduction, commonly usedinsulating gases. | | - | 3 rd | Introduction of Dielectric Materials, Dielectric Constant of | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ၁ , | Permittivity | | | 4 th | | | 3 | 1 st | Polarization Dielectric Loss | | | | | | | 2 nd | Electric Conductivity of Dielectrics and theirBreak Down (Solid) | | 11 th | 3 rd | | | | . 3 | Liquid & Gaseous dielectric Break Down | | | 4 th | | | | | Properties of Dielectrics. | | | 1 st | Applications of Dielectrics. | | | 1 | Applications of Diciection | | 12 th _ | 2 nd | Introduction of Magnetic Materials | |--------------------|-----------------|--| | | 3 rd | Classification :Diamagnetism, Para magnetism, Ferromagnetism | | | 4 th | Magnetization Curve | | | 1 st | | | | | Hysteresis | | 13 th | 2 nd | Eddy Currents, Curie Point, Magneto-striction | | | 3 rd | Soft magnetic materials | | | 4 th | Hard magnetic materials | | | 1 st | Introduction of Materials for Special Purposes | | 14 th | 2 nd | Structural Materials | | | 3 rd | Protective Materials – Lead, Steel tapes, wires and strips | | | 4 th | Steel tapes, wires and strips | | 15 th | 1 st | Bimetals | | | 2 nd | Soldering Materials | | | 3 rd | Fuse and Fuse materials. | | | 4 th | Dehydrating material. | Signature of the Concerned faculty