LESSON PLAN

SUB:- ENGINEERING MATHEMATICS-III

BRANCH:- ELECTRICAL ENGG.

SEMESTER:3rd

SESSION:2022-2023

NAME OF FACULTY: -MANAS KUMAR MAHALIK

GOVERNMENT POLYTECHNIC, BHADRAK

HOD (ELECT.)
G.P.BHADRAK

Academic Co-ordinator

Govi, Polytechnic Govi, Polytechnic Bhadrak

GOVT. POLYTECHNIC, BHADRAK DEPARTMENT OF ELECTRICAL ENGG.

LESSON PLAN				
Discipline: Electrical Engineering	Semester:		Name of the teaching faculty: Manas Kumar Mahalik, Lecturer in Mathematics	
Subject: Engineering Mathematics-III (Th1)	No. of days/week class allotted: 04 Total no. of weeks: 15 Semester from date: 15.09.2022 To Date: 21.01.2023			
Week	Class Day		• Theory Topics	
1 st .	1 st	numbe	ABERS: Indicate the definition of a complex ser, conjugate of complex numbers, modulus of a sex number with examples	
	2 nd	o Amplit	ude of a complex number, geometrical entation of a complex number with example	
	3 rd 4 th		ties of complex numbers with examples nination of three cube roots of unity and their ties	
2 nd	1 st		ivre's theorem and problem solving O QUIZ & ASSIGNMENT-I	
	3 rd	Types of matrice	on of Matrix, row, column, order of a matrix, es: a) Row matrix, b) column matrix, c) square matrix e)Null matrix f)Lower & Upper triangular	
	4 th	 Determination with examples 	of rank of a matrix by elementary transformation,	
3 rd	1 st	transformation Rouche's Theo	imple of finding rank of a matrix by elementary method, Consistency of linear system of equations em, Procedure to test the consistency of linear tions of n unknowns.	
	2 nd	 Examples on consistency test and solving system of equations, Solving system of linear homogeneous equations 		
	3 rd	QUIZ & ASSIGNMENT-II		
	4 th	 Definitions: i) L equation with o homogeneous 	inear differential equation, ii) Linear differential constant coefficients iii) Homogeneous and non-linear differential equation with constant perator D, Concept of C.F. and P.I.	
4 th	1 st	General solution	n y=CF+PI. Rules for finding the CF: Case 1:- If roots ferent, Case 2: if roots are real and repeated, some	
	2 nd	• Case 3: If one p	air of roots be imaginary, Case 4: If two points of are equal, some examples on these two cases.	
	3 rd	 Inverse operator, Rules for finding the Particular Integral (PI): Case 1: When X=e^(ax), Case 2: when X=sin(ax+b) or cos(ax+b), 		

some examples on these two cases Solving problems on CF and PI

Al.	And the second second			
5 th	1 st	 Case 3: when X=x^m, Case 4: when X=e^(ax)V, some examples on 		
	2 nd	these two cases		
	3 rd	Working rule to find the Complete solution y=CF+PI, Examples		
	3	Partial differential equation (PDE), formation of PDE by eliminating		
	ath	arbitrary constants and arbitrary functions.		
6 th	4 th 1 st	Examples on formation of PDEs		
	2 nd	 Linear PDE of 1st order, working rule to solve Pp+Qq=R, examples 		
	3 rd	QUIZ & ASSIGNMENT-III		
	3	LAPLACE TRANSFORMS:		
7 th	ath:	Definition of Gamma function, reduction formula, example		
	4 th	• Prove $\Gamma(\frac{1}{2}) = \sqrt{\pi}$, Short problems on reduction formula		
/**	1 st	 Definition of Laplace transform of a function, inverse Laplace transform, existence of Laplace transform 		
	2 nd	 Derivation of Laplace transform of standard functions: k, tⁿ, sin a cos ax, sinh ax, cosh ax. 		
	3 rd	Properties of LT: i) Linearity property		
		 ii) First shifting property and problems on these properties. 		
	4 th	 Change of scale property, examples on it 		
8 th	1 st	 Formulation of LT of derivatives and integrals, some problems to 		
	2 nd	solve		
		• Formulation of LT multiplication by t^n , division by t , examples		
	3 rd	 Solving problems to find LT 		
-	4 th	 Derivation of formula of inverse LT and problems on Inverse LT. 		
9 th	1 st	QUIZ & ASSIGNMENT-IV		
	2 nd	 FOURIER SERIES: Definition of periodic function with example. Fourier series, Euler formulae. 		
	3 rd	• Establishment of some formulae: $ \circ \int_{\alpha}^{\alpha+2\pi} cosnx dx, \int_{\alpha}^{\alpha+2\pi} sinnx dx, $ $ \int_{\alpha}^{\alpha+2\pi} cosmx cosnx dx, \int_{\alpha}^{\alpha+2\pi} cos^2 nx dx $		
	4 th	 Dirichlet's condition for Fourier expansion, example 		
10 th	1 st	 Periodic function satisfying Dirichlet's condition as a Fourier serie with example 		
10	2 nd	Even function and its Fourier series in		
	2	$0 \le x \le 2\pi$ and $-\pi \le x \le \pi$, with example		
	3 rd			
	3.	Odd function and its Fourier series in		
		$0 \le x \le 2\pi$ and $-\pi \le x \le \pi$, with example		
	4 th	 Problems on even and odd function and Fourier series expansion 		
11 th	1 st	Fourier series of continuous function in		
		$0 \le x \le 2\pi$ and $-\pi \le x \le \pi$. and		
		• functions having points of discontinuity in $0 \le x \le 2\pi$ and $-\pi \le x \le \pi$.		
	2 nd			
	3 rd	QUIZ & ASSIGNMENT-V NUMERICAL METHODS:		
	3	Limitation of analytical methods and need of numerical method, iteration formula		

•	4 th	Bisection method and problem solving by this method		
12 th	1 st	Solution by Newton-Raphson method		
12	2 nd	QUIZ & ASSIGNMENT-VI		
	3 rd	FINITE DIFFERENCE AND INTERPOLATION:		
		Finite difference , forward and backward difference table		
	4 th	Definition of shift operator, relation between operators		
13 th	1 st	 Newton's forward difference interpolation for equal intervals with examples 		
	2 nd	 Newton's backward difference interpolation for equal intervals with examples 		
	3 rd	 Lagrange's interpolation for unequal intervals with examples 		
	4 th	Solving problems on Lagrange's interpolation		
14 th	1 st	 Problems on Lagrange's interpolation and Newton's forward difference interpolation 		
	2 nd	 Newton –Cote's formula, Trapezoidal rule with example 		
	3 rd	Simpson's 1/3 rd rule with example		
	4 th	QUIZ & ASSIGNMENT-VII		
15 th	1 st	REVISION		
	2 nd	REVISION		
	3 rd	PREVIOUS YEAR QUESTIONS DISCUSSION		
	4 th	PREVIOUS YEAR QUESTIONS DISCUSSION		

LEARNING RESOURCES:

- 1. Text Book of Engineering Mathematics-I By C. R Mallick, Kalyani Publication.
- 2.Text Book of Engineering Mathematics-III By C. R Mallick, Kalyani Publication.
- 3. Higher Mathematics By B.S Grewal , Khanna Publishers.

Signature of Faculty

Signature of HOD

demic Coordinator