LESSON PLAN SUB:- ENGINEERING MATHEMATICS-III **BRANCH:- ELECTRICAL ENGG.** SEMESTER:3rd SESSION:2022-2023 NAME OF FACULTY: -MANAS KUMAR MAHALIK GOVERNMENT POLYTECHNIC, BHADRAK HOD (ELECT.) G.P.BHADRAK Academic Co-ordinator Govi, Polytechnic Govi, Polytechnic Bhadrak ## GOVT. POLYTECHNIC, BHADRAK DEPARTMENT OF ELECTRICAL ENGG. | LESSON PLAN | | | | | |--|--|--|--|--| | Discipline: Electrical Engineering | Semester: | | Name of the teaching faculty: Manas Kumar Mahalik, Lecturer in Mathematics | | | Subject: Engineering Mathematics-III (Th1) | No. of days/week class allotted: 04 Total no. of weeks: 15 Semester from date: 15.09.2022 To Date: 21.01.2023 | | | | | Week | Class
Day | | • Theory Topics | | | 1 st . | 1 st | numbe | ABERS: Indicate the definition of a complex ser, conjugate of complex numbers, modulus of a sex number with examples | | | | 2 nd | o Amplit | ude of a complex number, geometrical entation of a complex number with example | | | | 3 rd
4 th | | ties of complex numbers with examples nination of three cube roots of unity and their ties | | | 2 nd | 1 st | | ivre's theorem and problem solving O QUIZ & ASSIGNMENT-I | | | | 3 rd | Types of matrice | on of Matrix, row, column, order of a matrix,
es: a) Row matrix, b) column matrix, c) square
matrix e)Null matrix f)Lower & Upper triangular | | | | 4 th | Determination
with examples | of rank of a matrix by elementary transformation, | | | 3 rd | 1 st | transformation
Rouche's Theo | imple of finding rank of a matrix by elementary method, Consistency of linear system of equations em, Procedure to test the consistency of linear tions of n unknowns. | | | | 2 nd | Examples on consistency test and solving system of equations, Solving system of linear homogeneous equations | | | | | 3 rd | QUIZ & ASSIGNMENT-II | | | | | 4 th | Definitions: i) L
equation with o
homogeneous | inear differential equation, ii) Linear differential constant coefficients iii) Homogeneous and non-linear differential equation with constant perator D, Concept of C.F. and P.I. | | | 4 th | 1 st | General solution | n y=CF+PI. Rules for finding the CF: Case 1:- If roots ferent, Case 2: if roots are real and repeated, some | | | | 2 nd | • Case 3: If one p | air of roots be imaginary, Case 4: If two points of are equal, some examples on these two cases. | | | | 3 rd | Inverse operator, Rules for finding the Particular Integral (PI): Case 1: When X=e^(ax), Case 2: when X=sin(ax+b) or cos(ax+b), | | | some examples on these two cases Solving problems on CF and PI | Al. | And the second second | | | | |------------------|------------------------------------|---|--|--| | 5 th | 1 st | Case 3: when X=x^m, Case 4: when X=e^(ax)V, some examples on | | | | | 2 nd | these two cases | | | | | 3 rd | Working rule to find the Complete solution y=CF+PI, Examples | | | | | 3 | Partial differential equation (PDE), formation of PDE by eliminating | | | | | ath | arbitrary constants and arbitrary functions. | | | | 6 th | 4 th
1 st | Examples on formation of PDEs | | | | | 2 nd | Linear PDE of 1st order, working rule to solve Pp+Qq=R, examples | | | | | 3 rd | QUIZ & ASSIGNMENT-III | | | | | 3 | LAPLACE TRANSFORMS: | | | | 7 th | ath: | Definition of Gamma function, reduction formula, example | | | | | 4 th | • Prove $\Gamma(\frac{1}{2}) = \sqrt{\pi}$, Short problems on reduction formula | | | | /** | 1 st | Definition of Laplace transform of a function, inverse Laplace
transform, existence of Laplace transform | | | | | 2 nd | Derivation of Laplace transform of standard functions: k, tⁿ, sin a cos ax, sinh ax, cosh ax. | | | | | 3 rd | Properties of LT: i) Linearity property | | | | | | ii) First shifting property and problems on these properties. | | | | | 4 th | Change of scale property, examples on it | | | | 8 th | 1 st | Formulation of LT of derivatives and integrals, some problems to | | | | | 2 nd | solve | | | | | | • Formulation of LT multiplication by t^n , division by t , examples | | | | | 3 rd | Solving problems to find LT | | | | - | 4 th | Derivation of formula of inverse LT and problems on Inverse LT. | | | | 9 th | 1 st | QUIZ & ASSIGNMENT-IV | | | | | 2 nd | FOURIER SERIES: Definition of periodic function with example. Fourier series, Euler formulae. | | | | | 3 rd | • Establishment of some formulae:
$ \circ \int_{\alpha}^{\alpha+2\pi} cosnx dx, \int_{\alpha}^{\alpha+2\pi} sinnx dx, $ $ \int_{\alpha}^{\alpha+2\pi} cosmx cosnx dx, \int_{\alpha}^{\alpha+2\pi} cos^2 nx dx $ | | | | | 4 th | Dirichlet's condition for Fourier expansion, example | | | | 10 th | 1 st | Periodic function satisfying Dirichlet's condition as a Fourier serie with example | | | | 10 | 2 nd | Even function and its Fourier series in | | | | | 2 | $0 \le x \le 2\pi$ and $-\pi \le x \le \pi$, with example | | | | | 3 rd | | | | | | 3. | Odd function and its Fourier series in | | | | | | $0 \le x \le 2\pi$ and $-\pi \le x \le \pi$, with example | | | | | 4 th | Problems on even and odd function and Fourier series expansion | | | | 11 th | 1 st | Fourier series of continuous function in | | | | | | $0 \le x \le 2\pi$ and $-\pi \le x \le \pi$. and | | | | | | • functions having points of discontinuity in $0 \le x \le 2\pi$ and $-\pi \le x \le \pi$. | | | | | 2 nd | | | | | | 3 rd | QUIZ & ASSIGNMENT-V NUMERICAL METHODS: | | | | | 3 | Limitation of analytical methods and need of numerical method, iteration formula | | | | • | 4 th | Bisection method and problem solving by this method | | | |------------------|-----------------|--|--|--| | 12 th | 1 st | Solution by Newton-Raphson method | | | | 12 | 2 nd | QUIZ & ASSIGNMENT-VI | | | | | 3 rd | FINITE DIFFERENCE AND INTERPOLATION: | | | | | | Finite difference , forward and backward difference table | | | | | 4 th | Definition of shift operator, relation between operators | | | | 13 th | 1 st | Newton's forward difference interpolation for equal intervals with
examples | | | | | 2 nd | Newton's backward difference interpolation for equal intervals
with examples | | | | | 3 rd | Lagrange's interpolation for unequal intervals with examples | | | | | 4 th | Solving problems on Lagrange's interpolation | | | | 14 th | 1 st | Problems on Lagrange's interpolation and Newton's forward difference interpolation | | | | | 2 nd | Newton –Cote's formula, Trapezoidal rule with example | | | | | 3 rd | Simpson's 1/3 rd rule with example | | | | | 4 th | QUIZ & ASSIGNMENT-VII | | | | 15 th | 1 st | REVISION | | | | | 2 nd | REVISION | | | | | 3 rd | PREVIOUS YEAR QUESTIONS DISCUSSION | | | | | 4 th | PREVIOUS YEAR QUESTIONS DISCUSSION | | | ## **LEARNING RESOURCES:** - 1. Text Book of Engineering Mathematics-I By C. R Mallick, Kalyani Publication. - 2.Text Book of Engineering Mathematics-III By C. R Mallick, Kalyani Publication. - 3. Higher Mathematics By B.S Grewal , Khanna Publishers. Signature of Faculty Signature of HOD demic Coordinator