| ELECTRICAL ENGG. | Semester:
3RD | Name of the Teaching Faculty : ABHIPSA DUTTA | |---|--|---| | Subject:
CIRCUIT
AND
NETWORK
THEORY | No. of
Days/per
week class
allotted:5 | Semester from date: 15.09.2022 To Date:22.12.2022 No. of Weeks:15 | | Week | Class Day | Theory/ Practical Topics | | | 1 st | Active, Passive, Unilateral & bilateral, Linear & Non linear element
Mesh Analysis | | 1 st ` | 2 nd | Mesh Equations by inspection Super mesh Analysis | | | 3 rd | Nodal Analysis | | | 4 th | Nodal Equations by inspection Super node Analysis. | | | 5 th | Different types of problem solving. | | | 1 st | Source Transformation Technique | | | 2 nd | Solve numerical problems (With Independent Sources Only) | | | 3 rd | Star to delta and delta to star transformation | | 2 nd | 4 th | Super position Theorem | | | 5 th | Assignment checking and doubt clearing. | | | 1 st | Thevenin's Theorem. | | | 2 nd | Norton's Theorem | | Fd - | 3 rd | Maximum power Transfer Theorem | | 3 rd | 4 th | Solve numerical problems (With Independent Sources Only) | | | 5 th | Assignment checking. | | | 1 st | Solve numerical problems (With Independent Sources Only) | | | 2 nd | Solve numerical problems (With Independent Sources Only) | | | 3 rd | A.C. through R-L. R-C & R-L-C | | 4 th | 4 th | Solution of problems of A.C. through R-L, R-C & R-L-C series Circuit by complex algebra method. | | | 5 th | Different types of problem solving. | | | 1 st | Solution of problems of A.C. through R-L, R-C & R-L-C parallel & Composite Circuits. | | | 2 nd | Power factor & power triangle | | 5 th | 3 rd | Deduce expression for active, reactive, apparent power. | |------------------|-------------------|--| | 6 th | 4 th • | Derive the resonant frequency of series resonance and parallel resonance circuit | | | 5 th | | | | 1 st | Assignment checking and doubt clearing. | | | 2 nd | Define Bandwidth, Selectivity & Q-factor in series circuit | | | 3 rd | Solve numerical problems | | | 3 | Concept of poly-phase system and phase sequence. | | | 4 th | Relation between phase and line quantities in star & delta connection | | | 5 th | Different types of problem solving. | | | 1 st | Power equation in 3-phase balanced circuit. | | | 2 nd | Solve numerical problems.] | | | 3 rd | Measurement of 3-phase power by two wattmeter method. | | 7 th | 4 th | Solve numerical problems | | | 5 th | Assignment checking and doubt clearing. | | 8 th | 1 st | Self Inductance and Mutual Inductance | | | 2 nd | Conductively coupled circuit and mutual impedance. | | | 3 rd | Dot convention | | 14. | 4 th | Coefficient of coupling | | | 5 th | Different types of problem solving. | | 9 th | 1 st | Series and parallel connection of coupled inductors and Solve numerical problems | | | 2 nd | Introduction of magnetic circuit Magnetizing force, Intensity, MMF, flux and their relations | | | 3 rd | Permeability, reluctance and permeance | | | 4 th | Analogy between electric and Magnetic Circuits | | | 5 th | Assignment checking and doubt clearing. | | 10 th | 1 st | B-H Curve | | | 2 nd | Series & parallel magnetic circuit | | | 3 rd | Hysteresis loop | | | 4 th | Problems on seies parallel magnet circuits | | , | 5 th | Different types of problem solving. | | 11 th | 1 st | Steady state & transient state response | | | | | | | 2 nd | Response to R-L circuit under DC condition. | | | 4 th | Response to RLC circuit under DC condition | |------------------|-----------------|--| | | 5 th | Assignment checking and doubt clearing. | | 12 th | 1 st | Solve numerical problems | | | 2 nd | Solve numerical problems. | | | 3 rd | Open circuit impedance (z) parameters | | | 4 th | Short circuit admittance (y) parameters | | | 5 th | Different types of problem solving. | | 13 th | 1 st | Transmission (ABCD) parameters. | | | 2 nd | Hybrid (h) parameters | | | 3 rd | Inter relationships of different parameters. | | | 4 th | Trepresentation | | | 5 th | Assignment checking and doubt clearing. | | L4 th | 1 st | π representation | | | 2 nd | Solve numerical problems. | | | 3 rd | Define filter | | | | Classification of pass Band, stop Band and cut-off frequency | | | 4 th | Classification of filters. | | | 5 th | Different types of problem solving. | | 15 th | <u>1</u> st | Constant – K low pass filter | | | 2.nd | Constant – K high pass filter. | | | | Constant – K Band pass filter 3 | | | 3 rd | Constant – K Band elimination filter. | | | | Solve Numerical problems. | | | 4 th | Previous Year Question discussion | | | 5 th | Assignment checking and doubt clearing. |