LESSON PLAN SUB: ELECTRICAL ENGINEERING MATERIAL BRANCH:- ELECTRICAL ENGG. SEMESTER: 3rd NAME OF FACULTY: NIBEDITA HO ## GOVERNMENT POLYTECHNIC, **BHADRAK** Hod Electrical HOD (ELECT.) G.P.BHADRAK Academic To-Odinator Pr/hgipal Govt. Polyt · Bhadrak | Discipline:
Electrical Engg. | Semester:
3 rd | Name of the Teaching Faculty :
Nibedita Ho | |--|---|---| | Subject: Electrical Engineering Material | No. of Days/per
week class
allotted:4 | Semester from date: 01.08.2023 To Date: 30.11.2023 No. of Weeks:15 | | Week # | Class Day | Theory | | 1 st | 1 st | Introduction Conducting Materials | | | 2 nd | Atomic structure, Inter atomic bonds | | | 3 rd | Resistivity, factors affecting resistivity | | | 4 th | Classification of conducting materials into low-resistivity and high resistivity materials | | 2 nd | 1 st | Low Resistivity Materials and their Applications. (Copper, Silver, Gold, Aluminum, Steel) | | | 2 nd | Stranded conductors | | | 3 rd | Bundled conductors | | | 4 th | Low resistivity copper alloys | | | 1 st | High Resistivity Materials and their Applications (Tungsten, Carbon, Platinum, Mercury) | | | 2 nd | Superconductivity | | 3 rd | 3 rd | Superconducting materials | | | 4 th | Application of superconductor materials | | | 1 st | Introduction of Semiconducting Materials | | | 2 nd | Electron Energy and Energy Band Theory | | 4 th | 3 rd | Excitation of Atoms | | | 4 th | Insulators, Semiconductors and Conductors | | 5 th | 1 st | Semiconductor Materials . | | | 2 nd | Covalent Bonds | | | 3 rd | Intrinsic Semiconductors | | | 4 th | Extrinsic Semiconductors | | 6 th | 1 st | N-Type Materials,P-Type Materials | | | 2 nd | Minority and Majority Carriers | | | 4 th | Applications of Semiconductor materialsRectifiers ,Temperature-sensitive resisters or thermistors | | 7 th | 1 st | Photoconductive cells, Photovoltaic cells, Varisters, Transistors, Hall effect generators, Solar power | |--------------------|-----------------|--| | | 2 nd | Introduction Insulating Materials | | | 3 rd | General properties of Insulating MaterialsElectrical properties | | | 4 th | Visual properties ,Mechanical properties | | | 1 st | Thermal properties | | | 2 nd | Chemical properties, Ageing | | | 3 rd | Insulating Materials – Classification, properties, application of fibrous materials | | | 4 th | Impregnated fibrous materials, Non-resinous materials | | 9 th | 1 st | Insulting liquids, Ceramics, mica & Mica Products | | | 2 nd | Asbestos & asbestos products, glass, Natural & synthetic rubbers. | | | 3 rd | Glass, Natural & synthetic rubbers. | | | 4 th | Insulating resins & their products, laminates | | . 10 th | 1 st | Adhesives, enamels & varnishes | | | 2 nd | Insulating gases -Introduction, commonly usedinsulating gases. | | | 3 rd | Introduction of Dielectric Materials, Dielectric Constant of Permittivity | | | 4 th | Polarization | | 11 th | 1 st | Dielectric Loss | | | 2 nd | Electric Conductivity of Dielectrics and theirBreak Down (Solid) | | | 3 rd | Liquid & Gaseous dielectric Break Down | | | 4 th | | |--------------------|-----------------|--| | | | Properties of Dielectrics. | | , 12 th | 1 st | Applications of Dielectrics. | | | 2 nd | Introduction of Magnetic Materials | | | 3 rd | Classification: Diamagnetism, Para magnetism, Ferromagnetism | | | 4 th | Magnetization Curve . | | | 1 st | | | | | Hysteresis | | 13 th | 2 nd | Eddy Currents, Curie Point, Magneto-striction | | | 3 rd | Soft magnetic materials | | | 4 th | Hard magnetic materials | | 14 th | 1 st | Introduction of Materials for Special Purposes | | | 2 nd | Structural Materials | | | 3 rd | Protective Materials – Lead, Steel tapes, wires and strips | | | 4 th | Steel tapes, wires and strips | | 15 th . | 1 st | Bimetals | | | 2 nd | Soldering Materials | | | 3 rd | Fuse and Fuse materials. | | | 4 th | Dehydrating material. | 31.07.2023 Lect.in Elect.Engg. Govt.Poly.Bhadrak