LESSON PLAN

SUB: ADVANCE MANUFACTURING PROCESSES

BRANCH:- MECHANICAL ENGG.

SEMESTER: 6th

NAME OF FACULTY: ER. SUJIT KUMAN PUHAN

GOVERNMENT POLYTECHNIC, BHADRAK SESSION:2023-24

Hod ,Mechanical

Academic Co-brdinator

Discipline:	Semester	Name of the Teaching
MECHANICAL	: <u>6th</u>	Faculty:_SUJIT KUMAR
ENGG		PUHAN
		GF, Mechanical Engg
Subject <u>AMP</u>	No. of	Semester From date:
	days/perweek	16.01.2024 To date:
	class allotted:	26.04.2024
	4	No of weeks: 15
Week	Class Day	Theory Topics:
1st	1st	Modern Machining Processes: Introduction – comparison with traditional machining
	2 nd	Ultrasonic Machining: principle, Description of equipment, applications.
	3rd	Ultrasonic Machining: principle, Description of equipment, applications.
	4 th	Electric Discharge Machining: Principle, Description of equipmen
	1st	Electric Discharge Machining: Principle, Description of equipmen
2 nd	2 nd	Electric Discharge Machining: Principle, Description of equipment, Dielectric fluid, tools (electrodes), Process parameters, Output characteristics, appl
	3rd	Electric Discharge Machining: Principle, Description of equipment, Dielectric fluid, tools (electrodes), Process parameters, Output characteristics, appl
	4 th	Electric Discharge Machining: Principle, Description of equipment, Dielectric fluid, tools (electrodes), Process parameters, Output characteristics, appl
3rd	1st	Wire cut EDM: Principle, Description of equipment, controlling paramete
	2 nd	Wire cut EDM: Principle, Description of equipment, controlling paramete
	.3rd	Wire cut EDM: Principle, Description of equipment, controlling paramete
	4 th	Abrasive Jet Machining: principle, description of equipment, Materia removal rate, application.
4 th	1st	Abrasive Jet Machining: principle, description of equipment, Materia removal rate, application
	2 nd	Abrasive Jet Machining: principle, description of equipment, Materia removal rate, application
	3rd	Abrasive Jet Machining: principle, description of equipment, Materia removal rate, application
	4 th	Laser Beam Machining: principle, description of equipment, Materiremoval rate, applica
	1 st	Laser Beam Machining: principle, description of equipment, Materia removal rate, applica

Sujit Deemas Puharr

16.01.24

5 th	2 nd	Electro Chemical Machining: principle, description of equipment, Material removal rate, application.
	3 rd	Plasma Arc Machining – principle, description of equipment, Materia removal rate, Process par
	4 th	Electron Beam Machining - principle, description of equipment, Material removal rate, Process parameters,
6 th	1 st	Plastic Processing:
		Processing of plastics.
	2 nd	Moulding processes: Injection moulding, Compression moulding, Transfer moulding.
	3rd	Moulding processes: Injection moulding, Compression moulding, Transfer moulding.
	4 th	Moulding processes: Injection moulding, Compression moulding, Transfer moulding.
	1 st	Extruding; Casting; Calendering.
7 th	2 nd	Extruding; Casting; Calendering.
	3rd	Fabrication methods-Sheet forming, Blow moulding, Laminating plastics (sheets, rods & tubes), Reinforcing.
	4 th	CLASS TEST
	1st	Fabrication methods-Sheet forming, Blow moulding, Laminating plastics (sheets, rods & tubes), Reinforcing.
	2 nd	Applications of Plastics.
8 th	3rd	Additive Manufacturing Process:
		Introduction, Need for Additive Manufacturing
	4 th	Fundamentals of Additive Manufacturing, AM Process Chain
	1st	Advantages and Limitations of AM, Commonly used Terms
	2nd	Advantages and Limitations of AM, Commonly used Terms
9th	3rd	Classification of AM process, Fundamental Automated Processes, Distinction between AM and CNC, other related technologies.
	4 th	Classification of AM process, Fundamental Automated Processes, Distinction between AM and CNC, other related technologies.
	1 st	Application –Application in Design, Aerospace Industry, Automotive Industry, Jewelry Industry, Arts and Architecture. RP Medical and Bioengineering Applications.
10 th	2 nd	Application – Application in Design, Aerospace Industry, Automotive Industry, Jewelry Industry, Arts and Architecture. RP Medical and Bioengineering Applications.
	3rd	Web Based Rapid Prototyping Systems.
	4 th .	Web Based Rapid Prototyping Systems.
	1st	Concept of Flexible manufacturing process, concurrent engineering, production tools like capstan and turret lathes, rapid prototyping processes.

Sister Land Dhour

THE STATE OF THE S

11 th	2 nd	Concept of Flexible manufacturing profess, concurrent engineering, production tools like capstan and turret lathes, rapid prototyping processes.
	3rd	Concept of Flexible manufacturing process, concurrent engineering, production tools like capstan and turret lathes, rapid prototyping processes.
	4 th	Concept of Flexible manufacturing process, concurrent engineering, production tools like capstan and turret lathes, rapid prototyping processes.
12 th	1 st	Special Purpose Machines (SPM):
	2 nd	Concept, General elements of SPM, Productivity improvement by SPM, Principles of SPM design.
	3rd	CLASS TEST.
	4 th	Concept, General elements of SPM, Productivity improvement by SPM, Principles of SPM design.
13 th	1st	Concept, General elements of SPM, Productivity improvement by SPM, Principles of SPM design.
	2 nd	Maintenance of Machine Tools:
	3rd	Types of maintenance, Repair cycle analysis, Repair complexity, Maintenance manual, Maintenance records, Housekeeping. Introduction to Total Productive Maintenance (TPM).
	4 th	Types of maintenance, Repair cycle analysis, Repair complexity, Maintenance manual, Maintenance records, Housekeeping. Introduction to Total Productive Maintenance (TPM).
14 th	1 st	Types of maintenance, Repair cycle analysis, Repair complexity, Maintenance manual, Maintenance records, Housekeeping. Introduction to Total Productive Maintenance (TPM).
	2 nd	Types of maintenance, Repair cycle analysis, Repair complexity, Maintenance manual, Maintenance records, Housekeeping. Introduction to Total Productive Maintenance (TPM).
	3rd	Types of maintenance, Repair cycle analysis, Repair complexity, Maintenance manual, Maintenance records, Housekeeping. Introduction to Total Productive Maintenance (TPM).
	4 th	Discussion of PYQS
15 th	1 st	Discussion of PYQS
	2nd	Discussion of PYQS
	3rd	Extra class for weak student
	4 th	Extra class for weak student

Sujit leuhlar Puhan

HOD, Mech.