LESSON PLAN

SUB: ELECTRICAL MACHINE LAB - I

BRANCH:- ELECTRICAL ENGG.

SEMESTER: 4th

NAME OF FACULTY: NIBEDITA HO

GOVERNMENT POLYTECHNIC, BHADRAK

SESSION:2023-2024

Hod Day Cal-24

HOD (ELECT.)

Academic Co-ordinator

Academic Co-ordinato

Principal 10 - 0 - 20 Govt. Polytechnic, Bhadrak

- Frincipat Govt. Polytechnic Bhadrak

Discipline:	Semester:	Name of the Teaching Faculty :
Electrical Engg.	4	Nibedita Ho (Lect. Electrical Engg.)
Subject:	No. of Days/per	Semester from date: 16.01.2024 To Date: 26.04.2024
Electrical	week class	
Machine Lab - I	allotted: 6	
		No. of Weeks:15
Week	Class Day	Theory
		Identification of different terminals of a DC machine by test
	E ₁	lamp method and multimeter method & to measure insulation
		resistance by megger.
		Identification of different terminals of a DC machine by test
	E ₂	lamp method and multimeter method & to measure insulation
	_	resistance by megger.
15		Identification of different terminals of a DC machine by test
	E ₁	lamp method and multimeter method & to measure insulation
	-	resistance by megger.
		Identification of different terminals of a DC machine by test
	E ₂	lamp method and multimeter method & to measure insulation
	-2	resistance by megger.
		residence by megger.
	E ₁	Dimensional and material study of various parts of a DC machine.
	-1	binicisional and material study of various parts of a DC matrime.
	E ₂	Dimensional and material study of various parts of a DC machine.
		Dimensional and material study of various parts of a DC machine.
2 nd	E ₁	Dimonoinnal and material study of various as a situate
	Li	Dimensional and material study of various parts of a DC machine.
		Dimensional and material study of various parts of a DC machine.
	E ₂	
		Plot OCC of a DC shunt generator at constant speed and determine
	E ₁	critical resistance from the graph.
		Plot OCC of a DC shunt generator at constant speed and determin
	E ₂	critical resistance from the graph.
3 rd		Plot OCC of a DC shunt generator at constant speed and determin
	E ₁	critical resistance from the graph.
	•	Plot OCC of a DC shunt generator at constant speed and determin
	E2	critical resistance from the graph.
	•	Plot OCC of a DC shunt generator at constant speed and determin
	E ₁	critical resistance from the graph.
		Plot OCC of a DC shunt generator at constant speed and determin
4 ¹⁰⁷	E ₂	critical resistance from the graph.
-		PIOT DLL 01 a DC shuist generator at concretor control and deci-
-	E,	Plot OCC of a DC shunt generator at constant speed and betermin critical resistance from the graph.

			7 th			б .				رب آ	ţ	
E ₁	E,	ក្ខ	E ₂	E ₁	E ₂	Ē.	E ₂	E ₁	E ₂	E ₁	E ₂	ביי ביי
& armature voltage control method.	compound motor & measure no load current.	Study of Four point starter, connect and run a DC compound motor & measure no load current.	Study of Four point starter, connect and run a DC compound motor & measure no load current.	Study of Four point starter, connect and run a DC compound motor & measure no load current.	Study of Three point starter, connect and run a DC shunt motor & measure the no load current.	Study of Three point starter, connect and run a DC shunt motor & measure the no load current.	Study of Three point starter, connect and run a DC shunt motor & measure the no load current.	Study of Three point starter, connect and run a DC shunt motor & measure the no load current.	Plot External Characteristics of a DC shunt generator at constant speed.	Plot External Characteristics of a DC shunt generation at constant speed.	Plot External Characteristics of a DC shunt generator at constant speed.	critical resistance from the graph. Plot External Characteristics of a DC shunt generator at constant speed.

	or prior daisjoiner.		
	Identification of terminals, determination of voltage	E ₂	
	Identification of terminals, determination of voltage transformation ratio of a single phase transformer.	ŗ.	11"
	Identification of terminals, determination of voltage transformation ratio of a single phase transformer.	E ₂	:
	Identification of terminals, determination of voltage transformation ratio of a single phase transformer.	Ę,	
	Determine the efficiency of a DC machine by brake test meth	E ₂	
	Determine the efficiency of a DC machine by brake test meth	Ę	
	Determine the efficiency of a DC machine by brake test meth	E ₂	10
	Determine the efficiency of a DC machine by brake test meth	Ţ.	2
E. E. E. E. E.	Determine the armature current vs. speed characteristic of a motor.	E ₂	
E E E E	Determine the armature current vs. speed characteristic of a motor.	E ₁	
- E E E	Determine the armature current vs. speed characteristic of a motor.	E ₂	
E, E,	Determine the armature current vs. speed characteristic of a motor.	E ₁	9 th
.rr.	Control the speed of a DC shunt motor by field flux control n & armature voltage control method.	E ₂	
	Control the speed of a DC shunt motor by field flux control r & armature voltage control method.	Ĩ.	8
	Control the speed of a DC shunt motor by field flux control method & armature voltage control method.	E ₂	

	Ę.	Perform OC Test and SC test of a single phase transformer.
12 th	Ŗ	Perform OC Test and SC test of a single phase transformer.
	ī.	Perform OC Test and SC test of a single phase transformer.
	Ę	Perform OC Test and SC test of a single phase transformer.
	ñ	Perform OC Test and SC test of a single phase transformer.
13 th	E ₂	Perform OC Test and SC test of a single phase transformer.
	Ē	Perform OC Test and SC test of a single phase transformer.
	E ₂	Perform OC Test and SC test of a single phase transformer.
:	ជ	Determine the voltage regulation of a single phase transformer at different loads.
14 th	E ₂	Determine the voltage regulation of a single phase transformer at different loads.
	Ē ₁	Determine the voltage regulation of a single phase transformer at different loads.
	E ₂	Determine the voltage regulation of a single phase transformer at different loads.
	E	Polarity test of single phase transformer and parallel operation of two single phase transformers.
15 th	E ₂	Polarity test of single phase transformer and parallel operation of two single phase transformers.
	E,	Polarity test of single phase transformer and parallel operation of two single phase transformers.
	E ₂	Polarity test of single phase transformer and parallel operation of two single phase transformers.

Signature of Faculty
Lect. in Elect. Engg.
Govt. Poly. Shadrak