LESSON PLAN

SUB: ELECTRICAL MEASUREMENT & INSTRUMENTATION

BRANCH:- ELECTRICAL ENGG.

SEMESTER: 4th

NAME OF FACULTY: UMESH KU. DALAI

GOVERNMENT POLYTECHNIC, BHADRAK SESSION:2023-24

HOD (ELECT.) G.P.BHADRAK

Academic Co-ordinator

Acedemic Go-ordina...

Govt. Polytechnic, Bhadrak

Govt. Polytechnie

Bhadrak

Discipline:	Semester:	Name of the Teaching Faculty:		
Electrical Engg.	4 th	UMESH KU DALAI(LECT IN ELECT.ENGG.)		
Subject:	No. of Days/per	Semester from date: 16.01.2024 To Date: 26.04.2024		
Electrical	week class			
Measurement &	allotted:4+1			
Instrumentation		No. of Weeks:15		
Week	Class Day	Theory		
1 st	1 st	Define Accuracy, precision, Errors, Resolutions Sensitivity and tolerance.		
	2 nd	Classification of measuring instruments.		
	3 rd	Explain Deflecting, controlling arrangements in indicating type of instruments.		
	4 th	Explain damping arrangements in indicating type of instruments.		
	5 th	Calibration of instruments.		
2 nd .	1 st	Describe Construction, principle of operation of Moving iron type		
	nd.	instruments.		
	2 nd	errors, ranges merits and demerits of Moving fron type instruments.		
	3 rd	Describe Construction, principle of operation of Permanent Magnet Moving coil type instruments.		
	4 th	errors, ranges merits and demerits of Permanent Magnet Moving coil type instruments.		
	5 th	Describe Construction, principle of operation, errors, ranges merit and demerits of Dynamometer type instruments.		
3 rd	1 st	Describe Construction, principle of operation, errors, ranges merits and demerits of Rectifier type instruments .		
	2 nd	Describe Construction, principle of operation, errors, ranges merits and demerits of Induction type instruments.		
	3 rd	Extend the range of instruments by use of shunts and Multipliers.		
	4 th	Extend the range of instruments by use Multipliers.		
	5 th	Solve Numerical		
4 th	1 st	Describe Construction, principle of working of Dynamometer type wattmeter (LPF Type)		
	2 nd	Describe Construction, principle of working of Dynamometer type wattmeter (UPF Type)		
	3 rd	The Errors in Dynamometer type wattmeter		
-	4 th	methods of their correction.		
	5 th	Discuss Induction type watt meters.		
	1 st	Discuss Induction type watt meters.		

	đ	ъ		
	8	ñ,		
	٧	d	5	a
	٦	۹		В

	2 nd	laterduction of Energy meter.
5 th	- 13	Introduction of Energy meter. Single Phase Induction type Energy meters – construction, working
	3 rd	principle
	4 th	principle Single Phase Induction type Energy meters r compensation &
	4	adjustments.
-	5 th	Testing of Energy Meters.
6 th		Tacking of Energy Meters.
0	2 nd	
	4 th	Tachometers, types and working principles Principle of operation and construction of Mechanical resonance
	4	resonance Type frequency meters.
	-th	resonance Type frequency meters. Principle of operation and construction of Mechanical resonance
	5 th	resonance Type frequency meters.
	a St	resonance Type frequency meters. Principle of operation and construction of Electrical resonance
	1 st	T framuoncy meiers
_15	- Pd	Principle of operation and construction of Electrical resonance
7 th	2 nd	Principle of operation and construction
		resonance Type frequency meters.
	• 3 rd	Principle of operation and working of Dynamometer type
		single phase power factor meters.
	4 th	Principle of operation and working of Dynamometer type single
	_	phase power factor meters.
	5 th	
	,	Principle of operation and working of Dynamometer type
		three phase power factor meters.
	1 st	Principle of operation and working of Dynamometer type
		three phase power factor meters.
	2 nd	Measurement of medium resistance by wheat Stone bridge
		method.
	3 rd	Measurement of high resistance by loss of charge method.
	3	Weasurement of high resistance by loss of charge method.
8 th		
	4 th	Construction, principle of operations of Megger & Earth
		tester for insulation resistance and earth resistance
		measurement respectively.
		·
	- 5 th	Construction, principle of operations of Megger & Earth
		tester for insulation resistance and earth resistance
		measurement respectively.
	1 st	Construction and principles of Multimeter. (Analog and Digital)
	- 3	
	2 nd	Measurement of inductance by Maxewell's Bridge method.
9 th	3	
,	3 rd	Measurement of capacitance by Schering Bridge method
	4 th	Define Transducer, sensing element or detector element.

	5 th	Define transduction elements.
		Classify transducer. Give examples of various class of transducer.
	1 st	Classify transducer. Give
10 th	2 nd	Resistive transducer
_	- rd	
	3 rd	Linear and angular motion potentiometer Thermistor and Resistance thermometers.
	4 th	Thermistor and Resistance thermistor
10 m	5 th	Wire Resistance Strain Gauges
	1 st	Principle of linear variable differential Transformer (LVDT
	2 nd	Principle of linear variable differential Transformer (LVDT
11 th	3 rd	Construction and principles of Multimeter. (Analog and Digital)
	3	
-	4 th	Measurement of inductance by Maxewell's Bridge method.
	5 th	Measurement of capacitance by Schering Bridge method
	1 st	Define Transducer, sensing element or detector element and transduction elements.
12 th	2 nd	Classify transducer. Give examples of various class of transducer.
	3 rd	Resistive transducer.
	4 th	Linear and angular motion potentiometer.
	5 th	Thermistor and Resistance thermometers.
	1 st	Wire Resistance Strain Gauges.
	2 nd	Inductive Transducer.
13 th	3 rd	Principle of linear variable differential Transformer (LVDT).
13	4 th	Uses of LVDT.
	5 th	Capacitive Transducer

	1 st	General principle of capacitive transducer.
14 th	2 nd	Variable area capacitive transducer.
	3 rd	Change in distance between plate capacitive transducer
	4 th	Piezo electric Transducer
	5 th	Hall Effect Transducer with their applications.
	1 st	Principle of operation of Cathode Ray Tube.
15 th	2 nd	Principle of operation of Oscilloscope (with help of block diagram)
	3 rd	Measurement of DC Voltage & current.
	4 th	Measurement of AC Voltage, current,
	5 th	Measurement of phase & frequency.

13.01.2024 SIGNATURE OF FACULTY

Lect.in Elect.Engg. Govt.Poly.Bhadrak