LESSON PLAN

SUBJECT: APPLIED PHYSICS-I

BRANCH: COMMON (MECHANICAL & TEXTILE)

SEMESTER: 1ST (2024-25)

NAME OF THE FACULTY: ASEEMA BARIK

GOVERNMENT POLYTECHNIC, BHADRAK

HOD, Math& Sc

H.O.D. Math & Sc (I/c)

Academic Coordinator

Govt. Polytechnic Bhadrak

Rhadrak

GOVT. POLYTECHNIC, BHADRAK

AT: TENTULIGADIA, VIA: RAHANDIA, DIST: BHADRAK, PIN: 756135

. E-mail: principalgpbhadrak@gmail.com Tel: 9438806922

LESSON PLAN FOR WINTER SEMESTER – 2024 Dept. of Math & Science, Govt .Polytechnic, Bhadrak

Name of the Faculty: ASEEMA BARIK

Course Code: TH-2

Theory: APPLIED PHYSICS-I

Total Periods :60

Examination: WINTER (2024)

Sem: FIRST

Internal Assessment/ Sessional: 30

End Sem. Exam: 70 Total Mark: 100

Class Start: 16.08.2024

Discipline: Math & Science	Semester: 1 ST (2024)	Name of the Teaching Faculty : Aseema Barik	
Subject: Applied Physics-I	No. of Days/per week class allotted: 04	Semester from date: 16.08.2024 To Date: 11.12.2024 No. of Weeks: 15	
Week	Class Day	Theory/ Topics	
. 1 st	1 st	 Brief discussion on geometry and mathematics Definition of physical quantities ,fundamental units ,derived units 	
	2 nd	 System of units (FPS, CGS and SI units) Definition of dimension 	
	3 rd	 Dimensional formula of physical quantities Dimensional equation and principle of homogeneity 	
	4 th	 Applications of dimensional equation (conversion from one system to another system) 	
2 nd	1 st	 Applications of dimensional equation (checking of dimensional equations) 	
	2 nd	 Applications of dimensional equation (derivation of simple equations) 	
	3 rd	 Measuring instruments, Least count, types of measurements 	
	4 th	 Errors in measurements (systematic,random), Absolute error, Relative error 	
3 rd	1 st	 Error propagation, error estimation & significant figures 	
	2 nd	 Definition & concept of Scalar and Vector quantities 	
	3 rd	 Representation of vectors and types of vectors 	
	4 th	 Addition and subtraction of vectors 	

4 th	1 st	 Triangle and Parallelogram Law (statement only) 	
	2 nd	Scalar and Vector product '	
	3 rd	 Resolution of vector and its application to inclined plane and lawn roller 	
	4 th	 Concept of Force and Momentum Statement and derivation of conservation of linear momentum 	
5 th	1 st	 Applications of linear momentum such as recoil of gun, rockets, impulse 	
	2 nd	 Circular motion, definition of angular displacement, angular velocity & acceleration, frequency, time period 	
	3 rd	 Relation between v, ω and a, α 	
	4 th	 Centripetal and centrifugal forces with live examples, expression & applications such as banking roads and bending of cyclist 	
6 th	1 st .	 Definition of Work and units, Examples of zero work, positive work, negative work 	
	2 nd	Friction: Definition, concept and types (static and dynamic)	
	3 rd	 Laws of Limiting Friction, Co-efficient of friction 	
	4 th	 Reducing friction and its engineering applications 	
7 th	1 st	 Work done in moving an object on horizontal and inclined plane for rough and plane surfaces and related applications 	
	2 nd	 Concept of energy and its units Kinetic energy 	
	3 rd	Gravitational potential energy with examples and derivations	
	4 th	 Mechanical energy, conservation of mechanical energy for freely falling bodies, transformation of energy (example) 	
8 th	1 st	 Concept of Power and its units Power and work relationship, calculation of power 	
	2 nd	 Translational and Rotational motions with examples 	
	3 rd	 Definition of Torque and angular momentum and their examples 	
	4 th	 Conservation of angular momentum (quantitative) and its applications 	
9 th	1 st	■ 1 ST INTERNAL ASSESSMENT	
4	2 nd	 Moment of inertia and its physical significance Radius of gyration for rigid body 	

	3 rd	 Theorems of parallel and perpendicular axes(statements only)
	4 th	 Moment of inertia of rod, disc, ring and sphere(hollow and solid) [formulae only]
10 th	1 st	 Concept of elasticity, definition of stress and strain
	2 nd	 Moduli of elasticity, Hooke's law
1.4.00		 Significance of stress-strain curve
	3 rd	 Definition of pressure and units Atmospheric pressure, Gauge pressure, absolute pressure
	4 th	Fortin's Barometer and its applications
11 th	1 st	 Concept of surface tension and units
		 Cohesive and adhesive forces
	2 nd	 Angle of contact, ascent formula(no derivation), applications of surface tension
	3 rd	 Viscosity and co-efficient of viscosity, terminal velocity
	4 th	 Stoke's law and effect of temperature on viscosity Application of hydraulic systems
12 th	1 st	■ Concept of Hydrodynamics, fluid motion
	2 nd	 Stream line and turbulent flow, Reynold's number Equation of continuity
	3 rd	 Bernoulli's theorem (only formula and numerical) and its applications
	4 th	 Concept of heat and temperature
13 th	1 st	 Models of heat transfer (conduction, convection and radiation with examples)
	2 nd	 Specific heat, scales of temperature and their relationship
	3 rd	 Types of thermometer (Mercury thermometer, Bimetallic thermometer, Pyrometer) and their uses
	4 th	 Expansion of solids, liquids and gases
14 th	1 st	 2nd INTERNAL ASSESSMENT
	2 nd	 Co-efficient of linear, surface and cubical expansion and numericals
	3 rd	 Relation between different types of co-efficient of expansions
	4 th	 Co-efficient of thermal conductivity and applications
15 th	1 st	 Previous year question discussion
	2 nd	Short type question discussion

3 rd	 Important question discussion 	
4 th	 Important question discussion 	

Signature of Faculty