LESSON PLAN SUBJECT: APPLIED PHYSICS-I LAB BRANCH: COMMON (MECHANICAL & TEXTILE) SEMESTER: 1ST (2024-25) NAME OF THE FACULTY: ASEEMA BARIK **GOVERNMENT POLYTECHNIC, BHADRAK** HOD, Math& Sc H.O.D. Math & Sc (I/c) Academic Coordinator Principal Cover Polytechnic, Bhadrak Bhadrak ## GOVT. POLYTECHNIC, BHADRAK AT: TENTULIGADIA, VIA: RAHANDIA, DIST: BHADRAK, PIN: 756135 E-mail: principalgpbhadrak@gmail.com Tel: 9438806922 ## LESSON PLAN FOR WINTER SEMESTER – 2024 Dept. of Math & Science, Govt. Polytechnic, Bhadrak Name of the Faculty_: Aseema Barik Course Code: Pr-2 Theory: Applied Physics-I Lab Total Periods: 30 Examination: Winter(2024) Sem: 1ST Sessional: 25 End Sem. Exam: 25 Total Mark: 50 Class Start: 16.08.2024 | Discipline:
Math &
Science | Semester:
1 ST (2024) | Name of the Teaching Faculty : Aseema Barik | |---|--|---| | Subject:
Applied
Physics-I
Lab | No. of
Days/per
week class
allotted: 1
day/ 2
classes | Semester from date: 16.08.2024 To Date: 11.12.2024 No. of Weeks: 15 | | Week | Class Day | Practical/ Topics | | 1 st | 1 ST | Importance of experimentation and accurate measurement Instruction of maintaining lab record Introduction to vernier caliper, screw gauge, spherometer | | 2 nd | 2 ND | Measurement of length, radius of a given cylinder (solid) using vernier caliper Measurement of length, radius of a given cylinder (hollow) using vernier caliper | | | 2 ND | ■ Determination of diameter of a wire using screw gauge | | 3 rd | 1 ST | ■ Determination of diameter of a solid ball using screw gauge | | | 2 ND | ■ Determination of radius of curvature of a convex mirror using a spherometer | | 4 th | 1 ST | ■ Determination of radius of curvature of a concave mirror using a spherometer | | | 2 ND | Demonstration to verify triangle and parallelogram law of forces | |-----------------|-----------------|---| | 5 th | 1 ST | Demonstration to verify law of conservation of mechanical energy(PE to KE) | | | 2 ND | Demonstration to find the co-efficient of friction between wood and glass using
a horizontal board | | 6 th | 1 ST | Demonstration to find the co-efficient if linear expansion of the material of a roo | | | 2 ND | Measurement of room temperature and temperature of a hot bath using
mercury thermometer and convert into different scales | | 7 th | 1 ST | Lab practice by the students of group ✓ Alpha – Measurement of length, radius of given cylinder using vernier caliper ✓ Beta – Diameter of a wire using screw gauge ✓ Gamma – Diameter of a solid ball using screw gauge | | | 2 ND | ■ Lab practice by the students of group ✓ Alpha — Diameter of a wire using screw gauge ✓ Beta — Diameter of a solid ball using screw gauge ✓ Gamma — Measurement of length, radius of given cylinder using vernier caliper | | 8 th | 1 ST | Lab practice by the students of group ✓ Alpha – Diameter of a solid ball using screw gauge ✓ Beta – Measurement of length, radius of given cylinder using vernier caliper ✓ Gamma – Diameter of a wire using screw gauge | | | 2 ND | ■ Lab practice by the students of group ✓ Alpha — Radius of curvature of convex/concave surface using spherometer ✓ Beta — Verify triangle and parallelogram law of forces ✓ Gamma — Find co-efficient of friction between wood and glass | | 9 th | 1 ST | ■ Lab practice by the students of group ✓ Alpha – Verify triangle and parallelogram law of forces ✓ Beta – Find co-efficient of friction between wood and glass ✓ Gamma – Radius of curvature of convex/concave surface using spherometer | | 14 | Marine 1 (1) | | |------------------|-----------------|---| | | 2 ND | ■ Lab practice by the students of group ✓ Alpha — Find co-efficient of friction between wood and glass ✓ Beta — Radius of curvature of convex/concave surface using spherometer ✓ Gamma — Verify triangle and parallelogram law of forces | | 10 th | 1 ST | ■ Lab practice by the students of group ✓ Alpha – Verify law of conservation of mechanical energy ✓ Beta – Find the co-efficient of linear expansion of a rod ✓ Gamma – Measure room temperature and temperature of hot bath using mercury thermometer | | | 2 ND | ■ Lab practice by the students of group ✓ Alpha – Find the co-efficient of linear expansion of a rod ✓ Beta – Measure room temperature and temperature of hot bath using mercury thermometer ✓ Gamma – Verify law of conservation of mechanical energy | | 11 th | 2 ND | ■ Lab practice by the students of group ✓ Alpha – Measure room temperature and temperature of hot bath using mercury thermometer ✓ Beta – Verify law of conservation of mechanical energy ✓ Gamma – Find the co-efficient of linear expansion of a rod ■ Re-practice on the basis of necessity ■ Record correction | | 12 th | 1 ST | Demonstration to find the moment of inertia of a flywheel | | | 2 ND | Demonstration to find the viscosity of a given liquid(Glycerin) by Stoke's law | | 13 th | 1 ST | Demonstration to determine the atmospheric pressure at a place using Fortin' barometer | | | 2 ND | Lab practice by the students of group ✓ Alpha – To find the moment of inertia of a flywheel ✓ Beta – To find the viscosity of a given liquid(Glycerin) by Stoke's law ✓ Gamma – To determine the atmospheric pressure at a place using Fortin' barometer | | 14 th | 1 st | ■ Lab practice by the students of group ✓ Alpha — To find the viscosity of a given liquid(Glycerin) by Stoke's | | | | law ✓ Beta — To determine the atmospheric pressure at a place using Fortin' barometer ✓ Gamma — To find the moment of inertia of a flywheel | |------------------|-----------------|---| | | 2 ND | Lab practice by the students of group | | | | ✓ Alpha – To determine the atmospheric pressure at a place using | | | | Fortin' barometer | | | | ✓ Beta – To find the moment of inertia of a flywheel | | | | ✓ Gamma – To find the viscosity of a given liquid(Glycerin) by | | | The self-relief | Stoke's law | | 15 th | 1 ST | Record checking and viva | | | 2 ND | Record checking and viva | | | | | Signature of the Faculty