LESSON PLAN

SUBJECT: APPLIED CHEMISTRY

BRANCH: COMMON TO ALL BRANCH

SEMESTER: 2ND (2024-25)

NAME OF THE FACULTY: SATYAJIT DHAL

GOVERNMENT POLYTECHNIC, BHADRAK

HOD, Math& Sc

H.O.D. Math & Sc (I/c)

Academic Coordinator

Govt. Polytechnic, Bhadrak

Bhadrak

GOVT. POLYTECHNIC, BHADRAK

AT: TENTULIGADIA, VIA: RAHANDIA, DIST: BHADRAK, PIN: 756135

E-mail: principalgpbhadrak@gmail.com Tel: 9438806922

LESSON PLAN FOR SUMMER SEMESTER – 2025 Dept. of Math & Science ,Govt. Polytechnic, Bhadrak

Name of the Faculty: SATYAJIT DHAL

Course Code: TH-5

Theory: APPLIED CHEMISTRY

Total Periods:60

Examination: SUMMER (2025)

Sem: 2ND

Internal Assessment: 30

End Sem. Exam: 70 Total Mark: 100

Class Start : 04.02.2025

Discipline: Math & Science	Semester: 2 ND (2025)	Name of the Teaching Faculty : Satyajit Dhal
Subject: Applied Chemistry	No. of Days/per week class allotted: 04	Semester from date: 04.02.2025 To Date: 17.05.2025 No. of Weeks: 15
Week	Class Day	Theory/ Topics
1 st	1 st	 Rutherford model of atom
	2 nd	 Bohr's theory, and hydrogen spectrum explanation based on Bohr's model of atom
	3 rd	 Heisenberg uncertainty principle
	4 th	 Quantum numbers – orbital concept. Shapes of s,p and d orbitals
2 nd	1 st	 Pauli's exclusion principle, Hund's rule of maximum multiplicity Aufbau rule, electronic configuration.
	2 nd	 Cause of chemical bonding, types of bonds: ionic bonding (NaCl example), covalent bond (H2, F2, HF hybridization in BeCl2, BF3, CH4, NH3, H2O)
	3 rd	■ Coordination bond in NH4 +, and anomalous properties of NH3
	4 th	 H2O due to hydrogen bonding, and metallic bonding.
3 rd	1 st	Solution – idea of solute, solvent and solution
	2 nd	 Methods to express the concentration of solution molarity (M = mole per liter)
	3 rd	ppm, mass percentage, volume percentage and mole frac tion.
	4 th	 Graphical presentation of water distribution on Earth (pie or bar diagram)
4 th	1 st	 Classification of soft and hard water based on soap test

	2 nd	 Salts causing water hardness, unit of hardness and simple numerical on water hardness.
	3 rd	 Cause of poor lathering of soap in hard water
	4 th	 Problems caused by the use of hard water in boiler (scale and sludge foaming and priming, corrosion etc)
5 th	1 st	 Quantitative measurement of water hardness by ETDA method, total dissolved solids (TDS) alkalinity estimation
	2 nd	 Water softening techniques – soda lime process, zeolite process and ion exchange process.
	3 rd	 Municipal water treatment (in brief only) – sedimentation, coagulation, filtration, sterilization.
	4 th	Natural occurrence of metals – minerals, ores of iron
6 th	1 st	Aluminium and copper, gangue (matrix)
	2 nd	 Flux, slag, metallurgy – brief account of general principles of metallurgy
	3 rd	Extraction of - iron from haematite ore using blast furnace
	4 th	 Aluminium from bauxite along with reactions
7 th	1 st	 Alloys – definition, purposes of alloying
	2 nd	 Ferrous alloys and nonferrous with suitable examples, properties and applications
	3 rd	■ General chemical composition
	4 th	 Composition based applications (elementary idea only details omitted)
8 th	1 st	■ 1 ST INTERNAL ASSESSMENT
	2 nd	Port land cement and hardening
Market State	3 rd	 Glasses Refractory and Composite materials
	4 th	 Polymers – monomer, homo and co polymers
9 th	1 st	 degree of polymerization
,	2 nd	Simple reactions involved in preparation of polymer
National Property	3 rd	 Application of thermoplastics and thermosetting plastics (using PVC, PS, PTFE, nylon – 6, nylon-6,6 and Bakelite)
	4 th	 Rubber and vulcanization of rubber
10 th	1 st	Definition of fuel and combustion of fuel
. 20	2 nd	 Classification of fuels, calorific values (HCV and LCV)
	3 rd	 Calculation of HCV and LCV using Dulong's formula.
	4 th	 Proximate analysis of coal solid fuel
11 th	1 st	 Petrol and diesel - fuel rating (octane and cetane numbers)
	2 nd	Chemical composition, calorific values
	3 rd	 Applications of LPG, CNG, water gas, coal gas, producer gas and biogas
	4 th	 Lubrication – function and characteristic properties of good lubricant

12 th	1 st	 Classification with examples, lubrication mechanism – hydrodynamic and boundary lubrication
	· 2 nd	 Physical proper- ties (viscosity and viscosity index, oiliness, flash and fire point, could and pour point only)
	3 rd	 Chemical properties (coke number, total acid number saponification value) of lubricants.
	4 th	Electronic concept of oxidation, reduction and redox reactions
13 th	1 st	2 ND INTERNAL ASSESSMENT
	2 nd	 Definition of terms: electrolytes, non-electrolytes with suitable examples
	3 rd	 Faradays laws of electrolysis and simple numerical problems.
	4 th	■ Industrial Application of Electrolysis – • Electrometallurgy • Electroplating • Electrolytic refining.
14 th	1 st	 Application of redox reactions in electrochemical cells – • Primary cells – dry cell, • Secondary cell - commercially used lead storage battery, fuel and Solar cells
	2 nd	 Introduction to Corrosion of metals — • definition, types of corrosion (chemical and electrochemical), H2 liberation and O2 absorption mechanism of electrochemical corrosion, factors affecting rate of corrosion.
	3 rd	 Internal corrosion preventive measures – • Purification, alloying and heat treatment
	4 th	 External corrosion preventive measures: a) metal (anodic, cathodic) coatings, b) organic inhibitors.
15 th	1 st	 Previous year question discussion
	2 nd	Short type question discussion
	3 rd	 Important question discussion
	4 th	 Important question discussion

Signature of the Faculty