LESSON PLAN

SUBJECT: APPLIED PHYSICS-II

BRANCH: COMMON (MECHANICAL & TEXTILE)

SEMESTER: 2ND (2024-25)

NAME OF THE FACULTY: ASEEMA BARIK

GOVERNMENT POLYTECHNIC, BHADRAK

H.O.D. Math & Sc (1/c)

Academie Coordinator

GOVT. POLYTECHNIC, BHADRAK

AT: TENTULIGADIA, VIA: RAHANDIA, DIST: BHADRAK, PIN: 756135

E-mail: principalgpbhadrak@gmail.com Tel: 9438806922

LESSON PLAN FOR SUMMER SEMESTER – 2025 Dept. of Math & Science ,Govt. Polytechnic, Bhadrak

Name of the Faculty : ASEEMA BARIK

Course Code: TH-2

Theory: APPLIED PHYSICS-II

Total Periods :60

Examination: SUMMER (2025)

Sem: SECOND

Internal Assessment/ Sessional: 30

End Sem. Exam: 70 Total Mark:100

Class Start: 04.02.2025

Discipline: Math & Science	Semester: 2 ND (2025)	Name of the Teaching Faculty : Aseema Barik
Subject: Applied Physics-II	No. of Days/per week class allotted: 04	Semester from date: 04.02.2025 To Date: 17.05.2025 No. of Weeks: 15
Week	Class Day	Theory/ Topics
1 st	1 st	 Wave motion, transverse and longitudinal waves with example
	2 nd	 Definitions of wave velocity, frequency and wavelength and their relationship
	3 rd	 Sound and light waves, wave equation, amplitude, phase, phase difference, principle of superposition of waves
	4 th	 Simple harmonic motion(definition), expression for displacement, velocity, acceleration, time period, frequency
2 nd	1 st	 Simple harmonic progressive wave and energy transfer
2	2 nd	 Study of vibration of cantilever and determination of time period, free ,forced and resonant vibrations with examples
	3 rd	 Acoustics of buildings, reverberation, echo, noise, application of reverberation
	4 th	 Ultrasonic waves – properties and applications (engineering and medical)
3 rd	1 st	 Optical laws- reflection and refraction, refractive index
	2 nd	 Images and image formation by mirrors and lens
	3 rd	 Power of lens, magnification and defects
	4 th	 Total internal reflection, critical angle and conditions for total internal reflection,

		 Applications of T.I.R. in optical fiber
	•	•
4 th	1 st	 Optical instruments; simple and compound microscope, astronomical microscope
	2 nd	 Magnifying power, resolving power, uses of microscope and telescope
		Optical projection systems
	3 rd	 Coulomb's law, unit of charge, electric field
	4 th	 Electric lines of force and their properties
5 th	1 st	Electric flux, electric potential and potential difference
	2 nd	■ Gauss law
	3 rd	 Applications of Gauss law for straight charged conductor, plane charged sheet and charged sphere
	4 th	 Capacitor and its working, types of capacitors Capacitance and its units
6 th	1 st	 Capacitance of a parallel plate capacitor, series and parallel combination of capacitors
	2 nd	 Dielectric and its effect on capacitance, dielectric break down
	3 rd	 Electric current and its unit, direct and alternating current Resistance and its units
	4 th	 Specific resistance, conductance, specific conductance
7 th	1 st	 Series and parallel combination of resistances, factors affecting resistance of a wire
	2 nd	Carbon resistances and colour codingOhm's law and its verification
	3 rd	 Kirchhoff's laws, Wheatstone bridge and its applications(slide wire bridge only)
	4 th	 Concept of terminal potential difference and electromotive force(EMF)
8 th	1 st	■ 1 ST INTERNAL ASSESSMENT
4	2 nd	 Heating effect of current, electric power Electric energy and its units (related numerical problems)
	3 rd	 Advantages of electric energy over other forms of energy
	4 th	 Types of magnetic materials; dia, para and ferromagnetic wit their properties
		 Magnetic field and its units, magnetic intensity

	2 nd	 Magnetic lines of force, magnetic flux and units, magnetization
	3 rd	 Concept of electromagnetic induction, Faraday's laws
	4 th	 Lorentz force Force on current carrying conductor, force on rectangular coil placed in magnetic field
10 th	1 st	 Moving coil galvanometer; principle, construction and working
	2 nd	 Conversion of a galvanometer into ammeter and voltmeter
	3 rd	 Energy bands in solids, types of materials (insulator, semi- conductor, conductor)
	4 th	 Intrinsic and extrinsic semiconductors, p-n junction diode
11 th	1 st	 Junction diode and V-I characteristics, types of junction diode
	2 nd	 Diode as rectifier- half wave and full wave rectifier
	3 rd	 Transistors- description, types- pnp and npn, electronic applications
	4 th	 Photocells, solar cells; working principle and engineering applications
12 th	1 st	 Lasers: energy levels, ionization and excitation potentials
	2 nd	 Spontaneous and stimulated emission
	3 rd	 Population inversion, pumping methods, optical feedback
	4 th	 Types of lasers; Ruby, He-Ne and semiconductor
13 th	1 st	2 ND INTERNAL ASSESSMENT
	2 nd	 Laser characteristics and applications (engineering and medical
	3 rd	 Introduction to optical fibers
	4 th	Light propagation, acceptance angle and numerical aperture
14 th	1 st	 Fiber types and applications in telecommunication, medical ar sensors
	2 nd	 Nanoscience and nanotechnology: introduction
	3 rd	 Nanoparticles and nanomaterials, properties at nanoscale
	4 th	 Nanotechnology, nanotechnology based devices and applications
15 th	1 st	 Previous year question discussion
	2 nd	Short type question discussion
	3 rd	 Important question discussion
	4 th	 Important question discussion

Signature of Faculty