LESSON PLAN SUBJECT: - APPLIED PHYSICS - I (LAB) BRANCH: - COMMON (ELECTRICAL & COMP. SC.) SEMESTER: - 1st (2024-2025) NAME OF THE FACULTY: - JYOTIRMAYEE DASH GOVERNMENT POLYTECHNIC, BHADRAK HOD, Math& Sc Academic Coordinator/ Cademic Co-ordinator Govt polytechnic, Bhadrak Govt. Polytechnic Bhadrak ## GOVT. POLYTECHNIC, BHADRAK AT: TENTULIGADIA, VIA: RAHANDIA, DIST: BHADRAK, PIN: 756135 E-mail: principalgpbhadrak@gmail.com Tel: 9438806922 ## LESSON PLAN FOR WINTER SEMESTER- 2024 Dept. of Math & Science, Govt. Polytechnic, Bhadrak Name of the Faculty: Jyotirmayee Dash Course Code: Pr - 2 Theory: APPLIED. PHY-I (LAB) Total Periods: 30 Examination: WINTER (2024) Sem:1st Internal assessment/Sessional: 25 End Sem. Exam: 25 Total Mark:50 Class Start:16.08.2024 | Discipline:
Electrical &
Comp. Sc. | Semester:1st (2024) | Name of the Teaching Faculty: Jyotirmayee Dash | |--|-------------------------------|--| | Subject:
APPLIED. PHY-I | No. of Days/per
week class | Semester from date: 16.08.2024 To Date: 11.12.2024 | | (LAB) | allotted:1 day/2
classes | No. of Weeks: 15 | | Week | Class Day | Practical/ Topics | |-------------------|-----------------|--| | , 1 _{ST} | 1 st | Importance of experimentation and accurate measurement Instruction of maintaining lab record Introduction to vernier caliper, screw gauge, spherometer | | | 2 nd | Measurement of length, radius of a given solid cylinder using vernier caliper | | 2 nd | 1st | Measurement of length, radius of a given hollow cylinder using vernier caliper | | | 2 nd | Determination of wire using screw gauge | | 3 rd | 1 st | Determination of diameter of a solid ball using screw gauge | | | 2 nd | Determination of radius of curvature of a convex mirror using a spherometer | | 4 th | 1 st | Determination of radius of curvature of a concave mirror using a spherometer | | | 2 nd | Demonstration to verify triangle and parallelogram law of forces | | 5 th | 1 st | Demonstration to verify law of conservation of
mechanical energy (PE to KE) | |-----------------|-----------------|--| | | 2 nd | Demonstration to find the coefficient of friction between
wood and glass using a horizontal board | | 6 th | 1 st | Demonstration to find the coefficient of linear expansion of the material of a rod | | | 2 nd | Measurement of room temperature and temperature of a hot bath
using mercury thermometer and convert into different scales | | 7 th | 1 st | Lab practice by the students of group | | | | Alpha – Measurement of length, radius of given cylinder using vernier caliper Beta–Diameter of a wire using screw gauge | | | | Gamma – Diameter of a solid ball using screw gauge | | | 2 nd | Lab practice by the students of group Alpha - Diameter of a wire using screw gauge Beta- Diameter of a solid ball using screw gauge Gamma - Measurement of length, radius of given cylinder using vernier caliper | | 8 th | 1 st | Lab practice by the students of group Alpha - Diameter of a solid ball using screw gauge Beta-Measurement of length, radius of given cylinder using vernier caliper Gamma- Diameter of a wire using screw gauge | | | 2 nd | Lab practice by the students of group Alpha – Radius of curvature of convex/concave surface using spherometer Beta- Verify triangle and parallelogram law of forces Gamma- Find coefficient of friction between wood and glass | | 9 th | 1 st | Lab practice by the students of group Alpha - Verify triangle and parallelogram law of forces Beta- Find coefficient of friction between wood and glass Gamma - Radius of curvature of convex/concave surface using spherometer | | | 2 nd | Lab practice by the students of group Alpha - Find coefficient of friction between wood and glass | | | | Beta- Radius of curvature of convex/concave surface using spherometer Gamma – Verify triangle and parallelogram law of forces | |------------------|-----------------|---| | 10 th | 1 st | Lab practice by the students of group Alpha – Verify law of conservation of mechanical energy Beta- Find the coefficient of linear expansion of rod Gamma – Measure room temperature and temperature of hot bath using mercury thermometer | | | 2 nd | Lab practice by the students of group Alpha – Find the coefficient of linear expansion of rod Beta- Measure room temperature and temperature of hot bath using mercury thermometer Gamma – Verify law of conservation of mechanical energy | | 11 th | 1 st | Lab practice by the students of group | |------------------|-------------------|---| | | | Alpha – Measure room temperature and temperature of | | | | hot bath using mercury thermometer | | | | Beta- Verify law of conservation of mechanical energy | | | The second second | Gamma – Find the coefficient of linear expansion of rod , | | | 2 nd | Re-practice on the basis of necessity | | | 1000 | Record correction | | 12 th | 1 st | Demonstration to find the moment of inertia of a flywheel | | | 2 nd | Demonstration to find the viscosity of a given liquid (Glycerin) by Stoke's law | | 13 th | 1 st | Demonstration to determine the atmospheric pressure at a place using Fortin's barometer | | | 2 nd | Lab practice by the student of group | | | Brown and | Alpha- To find the moment of inertia of a flywheel | | | | Beta- To find the viscosity of a given (Glycerin) by Stoke's | | | | law | | | | Gamma- To determine the atmospheric pressure at a | | | | place using Fortin's barometer | | 14 th | 1 st | Lab practice by the student of group | | | Mostly Coldina | Alpha- To find the viscosity of a given (Glycerin) by Stoke's | | | | law | | | | Beta- To determine the atmospheric pressure at a place using Fortin's barometer Gamma- To find the moment of inertia of a flywheel | |------------------|-----------------|---| | | 2 nd | Lab practice by the student of group Alpha- To determine the atmospheric pressure at a place using Fortin's barometer | | | | Beta- To find the moment of inertia of a flywheel Gamma - To find the viscosity of a given (Glycerin) by Stoke's law Beta- To determine the | | 15 th | 1 st | Record checking and viva | | | 2 nd | Record checking and viva | SIGNATURE OF THE FACULTY: