DISCIPLINE ELECTRICAL	SEMESTER 5 TH	NAME OF THE TEACHING FACULTY UMESH KUMAR DALAI		
SUBJECT	NO. OF	SEMESTER FROM DATE		
DIGITAL ELECTRONICS & MICROPROCESSOR	DAYS/WEEK CLASS ALLOTTED - 75	14.07.2025 to 15.11.2025		
WEEK	CLASS DAY	THEORY TOPICS		
WEEK	01	BASICS OF DIGITAL ELECTRONICS		
	01	Binary, Octal, Hexadecimal number systems and compare with Decimal system.		
	02	Binary addition, subtraction, Multiplication and Division.		
1 ST	03	1's complement and 2's complement numbers for a binary number.		
	04	Subtraction of binary numbers in 2's complement method.		
	05	Use of weighted and Un-weighted codes & write Binary		
		equivalent number for a number in 8421, Excess-3 and Gray Code and vice-versa.		
	06	Importance of parity Bit.		
2 ND	07	Logic Gates: AND, OR, NOT, NAND, NOR and EX-OR gates with truth table.		
	08	Realize AND, OR, NOT operations using NAND gates.		
	09	Realize AND, OR, NOT operations using NOR gates.		
	10	Different postulates and De-Morgan's theorems in Boolean		
		algebra.		
	11	Use Of Boolean Algebra For Simplification Of Logic Expression.		
	12	Karnaugh Map For 2 &3Variable		
3 RD	13	Karnaugh Map For 4 Variable.		
	14	Simplification Of SOP And POS Logic Expression Using K-Map.		
	15	Revision of chapter 1.		
	16	Give the concept of combinational logic circuits.		
	17	Half adder circuit and verify its functionality using truth table.		
4 TH	18	Realize a Half-adder using NAND gates only and NOR gates only.		
	19	Full adder circuit and explain its operation with truth table.		
	20	Realize full-adder using two Half-adders and an OR – gate and write truth table.		
	21	Full subtractor circuit and explain its operation with truth table.		
5 [™]	22	Operation of 4 X 1 Multiplexers.		
	23	1 X 4 demultiplexer.		
	24	Working of Binary-Decimal Encoder		
	25	3 X 8 Decoder		
	26	Working of Two bit magnitude comparator.		
6 ^{тн}	27	Revision of chapter 2.		
	28	Revision of chapter 2.		
	29	Give the idea of Sequential logic circuits		
	30	State the necessity of clock and give the concept of level		
	24	clocking and edge triggering.		
	31	Clocked SR flip flop with pre-set and clear inputs.		
7 ™	32	Construct level clocked JK flip flop using S-R flip-flop and explain with truth table.		
	33	Concept of race around condition and study of master slave JK flip flop.		

	34	Give the truth tables of edge triggered D and T flip flops and draw their symbols.			
	35	Applications of flip flops.			
	36	Define modulus of a counter.			
	37	4-bit asynchronous counter and its timing diagram.			
8 TH	38	Asynchronous decade counter.			
	39	4-bit synchronous counter.			
	40	Distinguish between synchronous and asynchronous counters			
	41	State the need for a Register and list the four types of register			
	42	Working of SISO, SIPO, PISO, PIPO Register with truth table			
9 TH		using flip flop			
	43	Revision of chapter 3.			
	44	Revision of chapter 3.			
	45	Introduction to Microprocessors, Microcomputers.			
	46	Architecture of Intel 8085A Microprocessor and description of			
		each block.			
10 [™]	47	Pin diagram and description.			
	48	Stack, Stack pointer & stack top.			
	49	Interrupts.			
	50	Opcode & Operand.			
	51	Differentiate between one byte, two byte & three byte			
	31	instruction with example.			
11 [™]	52	Instruction set of 8085 example.			
-	53	Instruction set of 8085 example.			
	54	Instruction set of 8085 example.			
-	55	Addressing mode.			
	56	Fetch Cycle, Machine Cycle, Instruction Cycle, T-State			
	57	Timing Diagram for memory read, memory write, I/O read, I/O			
12 [™]		write			
	58	Timing Diagram for memory read, memory write, I/O read, I/O write			
	59	Timing Diagram for 8085 instruction.			
	60	Counter and time delay.			
	61	Simple assembly language programming of 8085.			
13 [™]	62	Revision of chapter 4.			
	63	Revision of chapter 4.			
	64	Basic Interfacing Concepts.			
	65	Memory mapping & I/O mapping.			
	66	Functional block diagram and description of each block of			
4 4TH		Programmable peripheral interface Intel 8255			
14 TH	67	Application using 8255: Seven segment LED display.			
	68	Square wave generator.			
	69	Traffic light Controller.			
	70	Revision of chapter 5.			
	71	Revision of chapter 1.			
15 [™]	72	Revision of chapter 2.			
	73	Revision of chapter 3.			
	74	Revision of chapter 4.			
	75	Revision of chapter 5.			