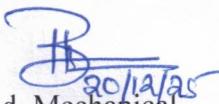


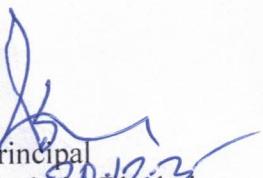
# LESSON PLAN

**SUB: TE-II**

**BRANCH:- MECHANICAL ENGG.**


**SEMESTER: 4TH**

**NAME OF FACULTY: ER.SAGAR KUMAR BEHERA**



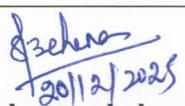

**GOVERNMENT POLYTECHNIC,  
BHADRAK**

**SESSION:2025-26**

  
Hod ,Mechanical

  
Academic Co-ordinator

  
Principal  
Govt. Polytechnic, Bhadrak


|                                                                  |                                                                 |                                                                                                                                                                              |
|------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Discipline:</b><br><b>MECHANICAL</b>                          | <b>Semester</b><br><b>:4<sup>th</sup></b>                       | <b>Name of the Teaching Faculty</b><br><b>Sagar kumar behera</b><br><b>Lecturer (Stage-II),Mechanical Engineering</b>                                                        |
| <b>Subject:</b><br><b>Thermal<br/>Engineering-II<br/>(TH:2 )</b> | <b>No. of<br/>days/per week<br/>class allotted:</b><br><b>3</b> | <b>Semester From date: 22/12/2025 To<br/>date: 18-04-26<br/>No of weeks: 15</b>                                                                                              |
| <b>Week</b>                                                      | <b>Class Day</b>                                                | <b>Theory Topics:</b>                                                                                                                                                        |
| <b>1<sup>st</sup></b>                                            | <b>1<sup>st</sup></b>                                           | Air-standard Brayton cycle; Description with p-v and T-S diagrams                                                                                                            |
|                                                                  | <b>2<sup>nd</sup></b>                                           | Gas turbines Classification: open cycle gas turbines and closed cycle gas turbines;                                                                                          |
|                                                                  | <b>3<sup>rd</sup></b>                                           | comparison of gas turbine with reciprocating I.C. engines and steam turbines.                                                                                                |
| <b>2<sup>nd</sup></b>                                            | <b>1<sup>st</sup></b>                                           | Applications and limitations of gas turbines                                                                                                                                 |
|                                                                  | <b>2<sup>nd</sup></b>                                           | General lay-out of Open cycle constant pressure gas turbine; P-V and T-S diagrams and working;                                                                               |
|                                                                  | <b>3<sup>rd</sup></b>                                           | General lay-out of Closed cycle gas turbine; P-V and T-S diagrams and working.                                                                                               |
| <b>3<sup>rd</sup></b>                                            | <b>1<sup>st</sup></b>                                           | Principle of jet propulsion; Fuels used for jet propulsion;                                                                                                                  |
|                                                                  | <b>2<sup>nd</sup></b>                                           | Applications of jet propulsion; Working of a turbojet engine                                                                                                                 |
|                                                                  | <b>3<sup>rd</sup></b>                                           | Principle of Ram effect; Working of a Ram jet engine                                                                                                                         |
| <b>4<sup>th</sup></b>                                            | <b>1<sup>st</sup></b>                                           | Principle of Rocket propulsion; Working principle of a rocket engine                                                                                                         |
|                                                                  | <b>2<sup>nd</sup></b>                                           | Applications of rocket propulsion; Comparison of jet and rocket propulsions.                                                                                                 |
|                                                                  | <b>3<sup>rd</sup></b>                                           | Formation of steam under constant pressure; Industrial uses of steam;                                                                                                        |
| <b>5<sup>th</sup></b>                                            | <b>1<sup>st</sup></b>                                           | Basic definitions: saturated liquid line, saturated vapor line, liquid region, vapor region, wet region, superheat region, critical point, saturated liquid, saturated vapor |
|                                                                  | <b>2<sup>nd</sup></b>                                           | Basic definitions: saturation temperature, sensible heat, latent heat, wet steam, dryness fraction, wetness fraction                                                         |
|                                                                  | <b>3<sup>rd</sup></b>                                           | Basic definitions: 2saturated steam, superheated steam, degree of superheat; Determination of enthalpy, internal energy, internal latent heat                                |
|                                                                  | <b>1<sup>st</sup></b>                                           | entropy of wet, dry and superheated steam at a given pressure using steam tables and Mollier chart for the following processes: Isochoric process, Isobaric process,         |

*[Signature]*

|                  |                 |                                                                                                                                                                                                   |
|------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6 <sup>th</sup>  |                 | Hyperbolic process.                                                                                                                                                                               |
|                  | 2 <sup>nd</sup> | Isothermal process, Isentropic process, Throttling process, Polytropic process;                                                                                                                   |
|                  | 3 <sup>rd</sup> | Simple direct problems on the above using tables and charts                                                                                                                                       |
| 7 <sup>th</sup>  | 1 <sup>st</sup> | Steam calorimeters: Separating, throttling, Combined Separating and throttling calorimeters                                                                                                       |
|                  | 2 <sup>nd</sup> | Simple direct problems .                                                                                                                                                                          |
|                  | 3 <sup>rd</sup> | Function and use of steam boilers; Classification of steam boilers with examples                                                                                                                  |
| 8 <sup>th</sup>  | 1 <sup>st</sup> | Brief explanation with line sketches of Cochran, Babcock and Wilcox Boilers;                                                                                                                      |
|                  | 2 <sup>nd</sup> | Comparison of water tube and fire tube boilers; Description with line sketches and working of modern high pressure boilers Lamont and Benson boilers;                                             |
|                  | 3 <sup>rd</sup> | Boiler mountings: Pressure gauge, water level indicator, fusible plug, blow down cock, stop valve, safety valve, (dead weight type, spring loaded type, high pressure and low water safety alarm) |
| 9 <sup>th</sup>  | 1 <sup>st</sup> | Boiler accessories: feed pump, economizer, super heater and air preheater; Study of steam traps & separators;                                                                                     |
|                  | 2 <sup>nd</sup> | Explanation of the terms: Actual evaporation, equivalent evaporation factor of evaporation, boiler horse power and boiler efficiency                                                              |
|                  | 3 <sup>rd</sup> | Formula for the above terms without proof; Simple direct problems the above                                                                                                                       |
| 10 <sup>th</sup> | 1 <sup>st</sup> | Draught systems (Natural, forced & induced)                                                                                                                                                       |
|                  | 2 <sup>nd</sup> | Flow of steam through nozzle; Velocity of steam at the exit of nozzle in terms of heat drop using analytical method                                                                               |
|                  | 3 <sup>rd</sup> | Flow of steam through nozzle; Velocity of steam at the exit of nozzle in terms of heat drop using Mollier chart                                                                                   |
| 11 <sup>th</sup> | 1 <sup>st</sup> | Discharge of steam through nozzles                                                                                                                                                                |
|                  | 2 <sup>nd</sup> | Critical pressure ratio                                                                                                                                                                           |

*Babu*

|                  |                 |                                                                                                                                                                                                                       |
|------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12 <sup>th</sup> | 1 <sup>st</sup> | Effect of friction in nozzles                                                                                                                                                                                         |
|                  | 2 <sup>nd</sup> | Super saturated flow in nozzles;                                                                                                                                                                                      |
|                  | 3 <sup>rd</sup> | Working steam jet injector                                                                                                                                                                                            |
| 13 <sup>th</sup> | 1 <sup>st</sup> | Simple numerical problems.                                                                                                                                                                                            |
|                  | 2 <sup>nd</sup> | Simple numerical problems.                                                                                                                                                                                            |
|                  | 3 <sup>rd</sup> | Classification of steam turbines with examples; Difference between impulse & reaction turbines                                                                                                                        |
| 14 <sup>th</sup> | 1 <sup>st</sup> | Principle of working of a simple De-lavel turbine with line diagrams- Velocity diagrams                                                                                                                               |
|                  | 2 <sup>nd</sup> | Expression for work done, axial thrust, tangential thrust, blade and diagram efficiency, stage efficiency, nozzle efficiency                                                                                          |
|                  | 3 <sup>rd</sup> | Methods of reducing rotor speed; compounding for velocity, for pressure or both pressure and velocity                                                                                                                 |
| 15 <sup>th</sup> | 1 <sup>st</sup> | Working principle with line diagram of a Parson's Reaction turbine- velocity diagrams; Simple problems on single stage impulse turbines (without blade friction) and reaction turbine including data on blade height. |
|                  | 2 <sup>nd</sup> | Bleeding, re-heating and re-heating factors(Problems omitted); Governing of steam turbines: Throttle, By-pass & Nozzle control governing.                                                                             |
|                  | 3 <sup>rd</sup> | PYQ solving                                                                                                                                                                                                           |

  
 20/12/2025  
 Sagar kumar behera

Lecturer (Stage-II)