LESSON PLAN SUB: ELECTRICAL MACHINE LAB - II BRANCH:- ELECTRICAL ENGG. SEMESTER: 5th NAME OF FACULTY: NIBEDITA HO ## GOVERNMENT POLYTECHNIC, BHADRAK How Rectrical HOD (ELECT.) G.P.BHADRAK Academic Co-ordinator Govt. Polytechnie, Bhadrak Govt. Polytechn! | Discipline:
Electrical Engg. | Semester:
5 th | Name of the Teaching Faculty :
Nibedita Ho | |--|--|---| | Subject:
Electrical
Machine Lab - II | No. of Days/per
week class
allotted: 6 | Semester from date: 01.08.2023 To Date: 30.11.2023 No. of Weeks:15 | | Week | Class Day | Theory | | | E2 | Study of (Manual and Semi automatic)Direct on Line starter, Star-
Delta starter, connection and running a 3- phase Induction motor
and measurement of starting current. | | | E1 | Study of (Manual and Semi automatic)Direct on Line starter, Star-
Delta starter, connection and running a 3- phase Induction motor
and measurement of starting current. | | 1 st | E2 | Study of (Manual and Semi automatic)Direct on Line starter, Star-
Delta starter, connection and running a 3- phase Induction motor
and measurement of starting current. | | | E1 | Study of (Manual and Semi automatic)Direct on Line starter, Star-
Delta starter, connection and running a 3- phase Induction motor
and measurement of starting current. | | | E2 | Study of (Manual and Semi automatic) Auto transformer starter and rotor resistance starter connection and running a 3-phase induction motor andmeasurement of starting current. | | | E1 | Study of (Manual and Semi automatic) Auto transformer starter and rotor resistance starter connection and running a 3-phase induction motor andmeasurement of starting current. | | 2 nd | E2 | Study of (Manual and Semi automatic) Auto transformer starter and rotor resistance starter connection and running a 3-phase induction motor andmeasurement of starting current. | | | E1 | Study of (Manual and Semi automatic) Auto transformer starter and rotor resistance starter connection and running a 3-phase induction motor andmeasurement of starting current. | | | E2 | Study and Practice of connection & Reverse the direction of rotation of 3 Phase Induction motor. | | | E1 | Study and Practice of connection & Reverse the direction of rotation of 3 Phase Induction motor. | | 3 rd | E2 | Study and Practice of connection & Reverse the direction of rotation of 3 Phase Induction motor. | | | E1 | Study and Practice of connection & Reverse the direction of rotation of 3 Phase Induction motor. | | | E2 | Study and Practice of connection & Reverse the direction of rotation of Single Phase Induction motor. | | | E1 | Study and Practice of connection & Reverse the direction of rotation of Single Phase Induction motor. | | 4 th | E2 | Study and Practice of connection & Reverse the direction of | |-----------------|------------|---| | | | rotation of Single Phase Induction motor. | | | E1 | Study and Practice of connection & Reverse the direction of | | | | rotation of Single Phase Induction motor. | | | E2 | OC and SC test of alternator and determination of regulation by | | , | | synchronous impedance method. | | | E1 | | | | | OC and SC test of alternator and determination of regulation by | | 5 th | | synchronous impedance method. | | - | E2 | OC and SC test of alternator and determination of regulation by | | | | synchronous impedance method. | | | E1 | OC and SC test of alternator and determination of regulation by | | | | synchronous impedance method. | | | E2 | OC and SC test of alternator and determination of regulation by | | | | synchronous impedance method. | | 6 th | E1 | OC and SC test of alternator and determination of regulation by | | 7 | | synchronous impedance method. | | | E2 | Determination of regulation of alternator by direct loading. | | - | | | | | E1 | Determination of regulation of alternator by direct loading. | | | E2 | Determination of regulation of alternator by direct loading. | | | | • | | | E1 | Determination of regulation of alternator by direct loading. | | | | | | | 1 | | | 7 th | E2 | Parallel operation of two alternators and study load sharing. | | | | | | 1 | | | | - | E1 | Parallal aparation of two alternature and study land it | | | £1 | Parallel operation of two alternators and study load sharing. | | a | | | | Z | E2 | Parallel operation of two alternators and study load sharing. | | | | and study load sharing. | | | | | | | E1 | Parallel operation of two alternators and study load sharing. | | | | and study load sharing. | | | | | | , | E2 | Measurement of power of a 3-phase Load using two wattmeter | | | | method and verification of the result using one 3- phase | | 8 th | | wattmeter. | | | | | | | E1 | Measurement of power of a 3-phase Load using two wattmeter | | 2 % | | method and verification of the result using one 3- phase | | | | wattmeter. | | | E2 | | | | L Z | Measurement of power of a 3-phase Load using two wattmeter | | | | method and verification of the result using one 3- phase | | _ +b | | wattmeter. | | 9 th | E1 | | | , | ΕŢ | Measurement of power of a 3-phase Load using two wattmeter | | 1 | | method and verification of the result using one 3- phase | | | | wattmeter. | |------------------|----------|--| | | E2 | Connection of 3-phase energy meter to a 3-phase load. | | | E1 | Connection of 3-phase energy meter to a 3-phase load. | | | E2 | Connection of 3-phase energy meter to a 3-phase load. | | 10 th | E1 | Connection of 3-phase energy meter to a 3-phase load. | | | E2 | Connection of 3-phase energy meter to a 3-phase load. | | | E1 | Connection of 3-phase energy meter to a 3-phase load. | | | E2 | Heat run test of 3-phase transformer. | | | E1 | Heat run test of 3-phase transformer. | | 11 th | E2 | Heat run test of 3-phase transformer. | | | E1 | Heat run test of 3-phase transformer. | | | E2 | Study of an O.C.B. | | | E1 | Study of an O.C.B. | | 12 th | E2 | Study of an O.C.B. | | | E1 | Study of an O.C.B. | | | E2 | Study of induction type over current /reverse power relay. | | 13 th | . E1 | Study of induction type over current /reverse power relay. | | | E2 | Study of induction type over current /reverse power relay. | | | E1 | Study of induction type over current /reverse power relay. | | | E2 | Study of Buchholz's relay. | | 14 th | E1 | Study of Buchholz's relay. | | | E2 | Study of Buchholz's relay. | | | E1 | Study of Buchholz's relay. | | | E2 | Study of an earth fault relay. | | | | | | | E1 | Study of an earth fault relay. | | 15 th | E1
E2 | Study of an earth fault relay. Study of an earth fault relay. Study of an earth fault relay. |